Implementing a networked VR experience on OpenACS

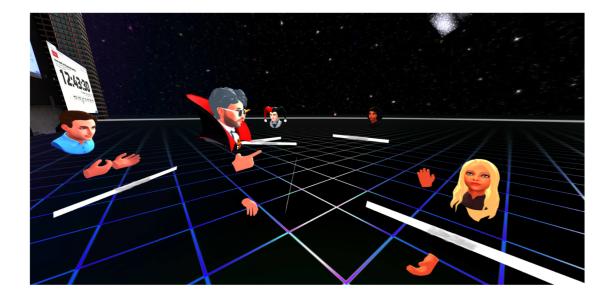
Antonio Pisano

What the talk is about

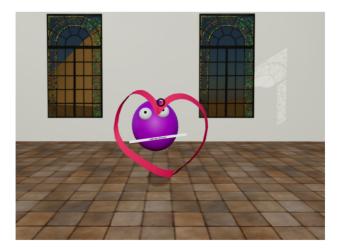
- Briefly...
 - How my toy project came to be
 - Main technologies I used for VR on the web
- A little longer...
 - OpenACS/Naviserver features I used
 - Platform-specific challenges and improvements
- Possibly...
 - A live demo!

Timeline

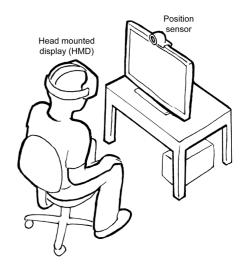
- September 2019
 - I buy myself an Oculus Quest
- March 2020
 - We get to stay at home a lot
- Spring-Summer 2020
 - Bored out of my mind
 - Doing stuff virtually is very trendy


- October 2020
 - First commit in the repo
- Since then
 - Continuous casual improvements

The idea


- A social VR experience in the style of Mozilla Hubs
- "Why not using Mozilla Hubs then?"
 - No self hosting at the time
 - Too complex for my (nonexistent) requirements
 - Confident I could get far enough with a smaller footprint
 - Sustainability concerns

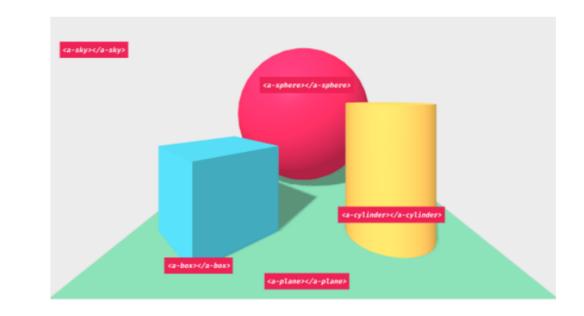
The outcome (1)



The outcome (2)

- A few cool things work including...
 - Spawn 3D models on the scene
 - WebRTC streaming (using Janus WebRTC Server)
 - Painting
 - Physics
 - Mozilla Hubs scene support
- Mostly untested on a scale
 - Testing on multiple VR headsets is a challenge in itself
 - No real customers so far

The client side - WebXR


- A set of standards for the web, finalized in 2018
- Supports interacting with devices designed for "eXtended Reality", including VR headsets
- eXtended Reality = Virtual Reality + Augmented Reality + Mixed Reality...
- Successor of WebVR, conceived in 2014
- Combined with WebGL, enables 3D immersive experiences on the web

The client side - A-Frame

- Abstraction on top of three.js and WebXR
- 3D objects are described using HTML tags and attributes
- Supports both desktop and headset devices

```
<html>
<html>
<head>
<script src="https://aframe.io/red
</head>
<body>
<a-scene>
<a-box position="-1 0.5 -3" rots
<a-sphere position="0 1.25 -5" i
<a-cylinder position="1 0.75 -3
<a-plane position="0 0 -4" rota
<a-sky color="#ECECCEC"></a-sky>
</a-scene>
</body>
</html>
```


The server side – Websockets (1)

- In a nutshell
 - Changes originating locally are broadcast to the other peers
 - Position, rotation, hand gestures...
 - Updates from the peers update our local representation
 - Rotate, translate the peer avatar/hands...
- Websockets on NaviServer
 - Supported via the websocket module since 2015 (4.99.7)
 - Based on the ns_connchan command
 - Initially, building the websocket message happened in Tcl

The server side – Websockets (2)

- Network traffic is generated whenever somebody moves
 - On desktop \rightarrow not touching the keyboard = no traffic
 - On a headset \rightarrow you always move... and you also have hands!
 - One headset >= 1 websocket message per screen refresh at all times
- Browser will start showing different behavior in such conditions
 - Message segmentation: 1 channel read \rightarrow partial message
 - Buffering: 1 channel read \rightarrow multiple messages
- General network problems add to the mix
 - Partial channel read/write, unexpected close
 - TLS

The server side – Websockets (3)

- NaviServer websocket implementation in 2020 needed some love
 - No support for segmented messages at the protocol level
 - No support for partial read and write operations at the channel level
 - Partial reads + appending binary content at the Tcl level \rightarrow prone to unwanted UTF-8 conversions \rightarrow corrupted messages
- Gustaf Neumann rewrites most of the module December 2020
 - C-Level interface to handle websocket messages
 - Handling of partial read/write operations
 - Handling of segmented messages
 - Faster performances

The server side – OpenACS features

- Site node system
 - Every package instance can be configured as a separate VR experience
 - Instances can be mounted in the context of different subsites targeting different cohorts
- Permissions and parameters
 - Some features have been connected with the user's level of privilege
 - Most features can be enabled/disabled/configured via parameters
- Includes and Virtual URL Handlers
 - The include mechanism and vuh files enable self-contained environments
 - Clear separation between global and environment-specific resources

Thanks for watching!

- My contacts
 - antonio@elettrotecnica.it
 - https://github.com/Elettrotecnica
- Project link
 - https://github.com/Elettrotecnica/aframe-vr

Time for a demo?