

Implementing a networked
VR experience on OpenACS

Antonio Pisano

What the talk is about

● Briefly...
– How my toy project came to be
– Main technologies I used for VR on the web

● A little longer...
– OpenACS/Naviserver features I used
– Platform-specific challenges and improvements

● Possibly…
– A live demo!

Timeline

● September 2019
– I buy myself an Oculus Quest

● March 2020
– We get to stay at home a lot

● Spring-Summer 2020
– Bored out of my mind

– Doing stuff virtually is very trendy

● October 2020
– First commit in the repo

● Since then
– Continuous casual improvements

The outcome (2)

● A few cool things work including...
– Spawn 3D models on the scene
– WebRTC streaming (using Janus WebRTC Server)
– Painting
– Physics
– Mozilla Hubs scene support

● Mostly untested on a scale
– Testing on multiple VR headsets is a challenge in itself
– No real customers so far

The client side - WebXR

● A set of standards for the web, finalized in 2018
● Supports interacting with devices designed for

“eXtended Reality”, including VR headsets
● eXtended Reality = Virtual Reality + Augmented

Reality + Mixed Reality...
● Successor of WebVR, conceived in 2014
● Combined with WebGL, enables 3D immersive

experiences on the web

The server side – Websockets (1)

● In a nutshell
– Changes originating locally are broadcast to the other peers

● Position, rotation, hand gestures...
– Updates from the peers update our local representation

● Rotate, translate the peer avatar/hands...
● Websockets on NaviServer

– Supported via the websocket module since 2015 (4.99.7)
– Based on the ns_connchan command
– Initially, building the websocket message happened in Tcl

● Network traffic is generated whenever somebody moves
– On desktop not touching the keyboard = no traffic→
– On a headset you always move… and you also have hands!→
– One headset >= 1 websocket message per screen refresh at all times

● Browser will start showing different behavior in such conditions
– Message segmentation: 1 channel read partial message→
– Buffering: 1 channel read multiple messages→

● General network problems add to the mix
– Partial channel read/write, unexpected close
– TLS

The server side – Websockets (2)

● NaviServer websocket implementation in 2020 needed some love
– No support for segmented messages at the protocol level
– No support for partial read and write operations at the channel level
– Partial reads + appending binary content at the Tcl level prone to →

unwanted UTF-8 conversions corrupted messages→
● Gustaf Neumann rewrites most of the module December 2020

– C-Level interface to handle websocket messages
– Handling of partial read/write operations
– Handling of segmented messages
– Faster performances

The server side – Websockets (3)

● Site node system
– Every package instance can be configured as a separate VR experience
– Instances can be mounted in the context of different subsites targeting

different cohorts

● Permissions and parameters
– Some features have been connected with the user’s level of privilege
– Most features can be enabled/disabled/configured via parameters

● Includes and Virtual URL Handlers
– The include mechanism and vuh files enable self-contained environments
– Clear separation between global and environment-specific resources

The server side – OpenACS features

Thanks for watching!

● My contacts
– antonio@elettrotecnica.it
– https://github.com/Elettrotecnica

● Project link
– https://github.com/Elettrotecnica/aframe-vr

mailto:antonio@elettrotecnica.it
https://github.com/Elettrotecnica
https://github.com/Elettrotecnica/aframe-vr

Time for a demo?

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14

