
NaviServer 5.0

OpenACS and EuroTcl 2023

Univ.-Prof. Dr. Gustaf Neumann
Vienna University of Economics and Business
Information Systems and New Media

JULY 20, 2023

§ What’s new?
§ New Licence
§ Tcl9 compatibility
§ Significant code changes
§ New Major version number

§ Reforms
§ Improved memory locality for ns_set
§ Persistent connections for ns_http
§ Removed usage of double-checking lock pattern
§ Clustering

§ Want’s next?
§ HTTP/2, HTTP/3?
§ More protocols

PAGE 2

Overview

§ NaviServer Releases:
§ 4.99.0 … 4.99.26
§ ”Running out of fingers and toes”

(Citation of Linus Torvalds, when Linux stepped up to 3.20)

§ New License:
§ Upgrade from Mozilla Public License Version 1.1 + GPL
§ to Mozilla Public License (MPL) 2.0

§ Tcl 9:
§ Lifting various restrictions (32-bit signed integers -> 64-bit)
§ Substantial code changes in NaviServer necessary to make use of new capabilities
§ Release of NaviServer 5 will be after the release of Tcl 9

§ New Features
§ A few set of changes cherry-picked on the next slides
§ Improved crypto functionality: E.g. support for Argon2 (winner of the 2015 Password

Hashing Competition, defined by RFC 9106)
§ NaviServer 5.0 works with Tcl 8.6 and Tcl 9 (regression test with GitHub workflows)

§ EOL NaviServer 4.99.*?
§ No, bugfixes still in the 4.99 branches, leading to 4.99.27 etc
§ Many NaviServer / OpenACS user are conservative

PAGE 3

Why a new major number?

§ What is an ns_set:
§ NaviServer data structure for the Tcl programmer
§ Like a Tcl dict, supporting duplicate keys, having names
§ Predates Tcl dict significantly (before 2000)

§ Used for:
§ HTTP header fields
§ Configuration values
§ SQL tuples
§ …

§ Example:
§ SQL query, returning 20 attributes, 1000 Tuples,

e.g.: “select * from acs_objects limit 1000”
§ 43.000 malloc/free operations (1000*(3 + 20*2))
§ This is for OpenACS installations a small query, many return 100K tuples or more

PAGE 4

ns_set reform (1/3)

ns_set reform (2/3)

PAGE 5

Improved memory locality
• Based on Tcl_DStrings
• More CPU-cache hits, improved performance
• Less memory consumption
• Less mutex locks

Old:

New:

Memory pages

CPU Cache management
• Changes in pages require refetch
• Multi-threading: refetch per thread
• Especially expensive with NUMA architectures
• Memory access might differ by a factor of 5

or more

Quick test:
§ Running sample query (1000 tuples a 20 attributes) in
§ 1..30 threads
§ Xeon Gold 6226R CPU @ 2.90GHz, 32 cores, hyper-threading enabled

Before (classical ns_set with many mallocs):
threads 1 total 4606.787 ms avg 3285.25 ms
threads 5 total 4595.358 ms avg 3493.07 ms
threads 10 total 4804.193 ms avg 3755.93 ms
threads 20 total 6279.524 ms avg 4569.16 ms
threads 30 total 8966.427 ms avg 6618.58 ms

After reform (using one Tcl_DString per tuple):
threads 1 total 4524.645 ms avg 3242.54 ms
threads 5 total 4251.266 ms avg 3450.09 ms
threads 10 total 4656.795 ms avg 3665.31 ms
threads 20 total 5934.105 ms avg 4671.38 ms
threads 30 total 7384.591 ms avg 5642.76 ms

E.g. with 30 threads, the total time improved by 17%.... with a smaller RSS.

PAGE 6

ns_set reform (3/3)

§ What is ns_http:
§ Webserver performs as a web client requests from other servers
§ Cloud services, authentication, …
§ REST interfaces
§ Based on low-level server streaming infra-structure
§ Significantly faster than curl (esp. for high number of requests)
§ HTTP client request log (similar to access.log)

§ What is new in NaviServer 5:
§ Persistent connections
§ Managing pool of connections, sharing across threads

§ Challenges:
§ Requires strict error and parsing implementation (request pipelining)
§ Handling of streaming HTML (no content length provided)
§ Handling of incorrect replies
§ Handling of “100 continue”
§ …

PAGE 7

ns_http reform (1/3)

ns_http reform (2/3)
Data visualized by NaviServer nsstats module

PAGE 8

Often significant usage
(up to several 100K
client requests per day)

Request performance
(secs)

Request frequency
(requests/sec)

Here: bulk synchronization
via ns_http with other
systems mostly over night

ns_http reform (3/3)
Data visualized by NaviServer nsstats module

PAGE 9

Statistics per server

External servers often source of sudden performance bottlenecks

Performance

Amount of Data
Status codes

§ Double-Checking Lock Pattern
§ Goal: reduce the overhead of acquiring locks
§ Testing the locking criterion before acquiring the lock.

§ The Problem:
§ The pattern assumes a total store order (TSO), or the

usage of “fences” (insert assembly)
§ In some language/hardware combinations, the pattern

is unsafe (RISC-V has per default a weak memory
order)

§ On x86: TSO, pattern is safe.

Newer architectures do aggressive optimizations, such as
1) compiler reordering instructions,
2) hardware reordering instructions,
3) cache coherency

§ NaviServer:
§ Two major variants of the double-checking lock pattern:

1. start-up initialization
2. lazy initialization of heap data (actually values kept for

mutexes/locks, etc.)
§ Case 1: a posix/windows call can be used (pthread_once(),

InitOnceExecuteOnce())
§ Case 2: requires more rewriting, lazy programming style.

PAGE 10

Removed occurrences of Double-
Checking Lock Pattern

§ NaviServer provides detailed statistics, such as:
§ Mutex/RWLock statistics (see conference last year)
§ Requests (per connection pool)
§ Cache (requests, hits, flushes, savings, …)
§ Database (per DB pool, statements, performance, …)
§ …

§ OpenACS 5.10.1 has no cluster management:
§ Up to 5.10.1: static configuration, based on IP addresses
§ Not feasible for e.g. cloud operations
§ In 5.10.1: dynamic cluster configuration:

§ Additional cluster nodes can be registered/deregistered
§ Cluster join control via cluster secret

§ Various trade-offs:
§ When DB and NaviServer are on the same machine

§ Communication with DB is fast
§ Maintaining cache coherency is relatively simple (all in one NaviServer instance)
§ NaviServer is excellent in making use of a high number of cores

§ But
§ What if this reaches limits?
§ Machines with many cores are still quite expensive
§ Can the throughput be doubled?
§ What are the consequences on response times (also on idle systems)?

PAGE 11

Large Scale NaviServer Configurations

Performance differences:
NaviServer and DB on the same or different VMs

§ Common pattern: Database Server
§ For cluster setups, DB is typically on an own VM
§ Performance implications depend on application

(e.g. how many SQL statements/request, cost of SQL requests)
§ Network latency of assign 10 ms can cause throughput decrease by a factor of 20 based on

pgbench, (see: https://www.cybertec-postgresql.com/en/postgresql-network-latency-does-make-a-big-difference/)

Empirical data from 3 sample
OpenACS installations

§ Data collected when running servers over 4 days
§ “server1” and “server2” are large sites, serving per day 1 mio requests or more
§ Significant database use (server1: ~38 SQL statements per request, server2: ~22)
§ Very few cache invalidations per request on OpenACS.org, very high on “server2”

Difference in response time and performance
when running SQL server on a different VM

§ Assumption:
§ remote SQL causes double latency per SQL statement (factor of 2)
§ For your applications: always best to measure, depends on local/cloud environment, etc.

§ Average response time for openacs.org dropped by 30%, but still, it is fast enough, we are far
from requiring max throughput.

§ Drop of max throughput for ”server1” and “server2” might be sometimes already an issue, but
probably, still OK

Performance differences:
NaviServer Cluster

§ Example: 3 Nodes
§ Database on a separate server

§ For cache coherency:
§ Requires intra-cluster communication
§ Via HTTP/HTTPS/UDP/COAP built-in

in NaviServer
§ Persistent connections handy

and preferable
§ Requires updated applications,

using “clusterwide” flush
operations

§ Alternatively:
§ Avoid caching
§ Setting parameter “cachingmode” to “none”
§ Avoids most of intra-cluster

communications with its overhead
§ But base performance degrades

Performance implications for
sample OpenACS installations

§ Request Latency Comparison: comparing
§ Single server
§ Caching/no caching
§ Local SQL/remote SQL
§ Cluster nodes with 30 threads each
§ Cluster configuration with 4 nodes
§ Cluster configuration with 8 nodes

§ Observation:
§ “server1” per-request performance drops

most, when caching is deactivated
(factor of 2.2)

§ Per-request performance of base
configuration (DB + server on the same
machine is best)

§ Caching benefits outweigh intra-cluster
communication overhead

Throughput implications for
sample OpenACS installations

§ Throughput Observations:
§ With cluster “no cache” configurations,

throughput of “openacs.org” and “server1”
is already higher with 4 nodes.

§ Throughput can be doubled with 4 to 8
smaller cluster nodes

§ Additional benefit:
Higher availability in cluster configuration

§ Caveats:
§ Is DB sufficiently scalable?
§ Statistics are collected from

single VM installations

Master Thesis of Philip Minić:
§ Prototype version of NaviServer with HTTP/2 support
§ Better performance than Apache and nginx with HTTP/2

PAGE 18

Experiment: HTTP/2 for NaviServer

Medium filesSmall files Large files

Status
- Still experimental
- HTTP/3 (QUIC) is part of OpenSSL 3.1
- Still frequent changes in OpenSSL QUIC code base
- Little reason for HTTP/2 when HTTP/3 is available

NaviServer

§ NaviServer 5
§ Overcomes many of the restrictions of NaviServer 4.99*
§ Strong integration with new Tcl 9 functionality
§ Many new features

§ Learning from observation

§ Installations become more complex and
distributed

§ Detailed monitoring eases

§ Configuration

§ Debugging

§ Still much to do!

§ Questions?

PAGE 19

Summary

Institute for Information Systems and
New Media
Welthandelsplatz 1, 1020 Vienna, Austria

UNIV.PROF. DR. Gustaf Neumann

T +43-1-313 36-4671
Gustaf.neumann@wu.ac.at
www.wu.ac.at

PAGE 20

