
Improving Scalability of
NaviServer

OpenACS and EuroTcl 2022

Univ.-Prof. Dr. Gustaf Neumann
Vienna University of Economics and Business
Information Systems and New Media

JUNE 30, 2022

§ NaviServer brief history

§ Scalability
§ Improve Locking
§ Improve behaviour on overload situations
§ Help to identify bottlenecks
§ Bandwidth management

§ More strict input handling
§ Induced by vulnerability scanning

§ Misc
§ Expose internals to Tcl
§ Unit support for API and configuration (e.g. 1s, 100µs, … 1KB, 1.5MB, …)
§ Crypto support (OCSP Stapling, SNI, SCRYPT, SCRAM, HMAC, 20+ digest

algorithms, …)
§ Experiments with HTTP/2 support

PAGE 2

Overview

§ NaviServer brief history
§ 1991 Closed-source product, developed by company “NaviSoft”,

used by AOL as AOLserver
§ 1999 AOLserver open source
§ 2005 fork of AOLserver 4.10 -> NaviServer 4.99.0 (original name)
§ 2016: integration of OpenSSL support directly in NaviServer, IPv6

§ NaviServer: multi-protocol server
§ HTTP, UDP, SMTP, LDAP, DNS, COAP, IMAP, …

§ Code Overview
§ 494 unique files
§ 140K lines of code (+58K lines comment + empty lines)
§ C: 73%, Tcl: 15%
§ >1900 tests in regression test

PAGE 3

History of NaviServer

Code Age analysis for NaviServer
(based on git-blame statistics)

PAGE 4

History: 22 years in repository
Average age per line: 10 years
Oldest lines: Copyright lines from AOL

Fork 4.99.0

4.99.14

4.99.19

Tcl ~15y

Bottlenecks based on mutex locks:
Example from OpenACS 5.9.1 (2019)

§ Avg Locks/request: 700 (OpenACS 5.10: openacs.org: 144)
§ Max reqs/sec: 248 (OpenACS 5.10: openacs.org: 4.8K)
§ For single cache:

§ Max Wait: 275ms, Locks/req: 42, max req/s: 509

Statistics from nsstats.tcl

Symptom: cores are under-utilized

Cache statistics
from OpenACS 5.9.1 (2019)

§ Hot caches: up to 47 cache hits per request

§ Most important caches:
Avg savings per request per cache up to 76ms

Hottest Cache entries
from OpenACS 5.9.1

§ Hot cache entries in util_memorize cache:

High reuse is good and bad:
§ Best savings
§ Potential candidate for more scalable caching forms

Improve scalability of caching
(1/2)

§ Reduce locking time
§ Bad on large caches (e.g. 300K+ entries):

Operations iterating over every item (e.g. wild-card operations)

ns_cache names …
util_memoize_flush_pattern …

§ Reducing size of cache reduces locking time, when such operations are
used

§ Reduce number of locking operations
§ Use per-thread or per-request caches (lock-free)
§ Use more fine-granular mutexes (split caches, cache partitioning)

Improve scalability of caching
(2/2)

§ Split caches and cache partitioning
§ Advantages:

§ Different caches use different locks, a lock on a specialized cache
does not block operations on the util_memoize cache

§ Less irrelevant data is processed, when wild-card operations are
applied to caches

§ Use different caches for different purposes
e.g. separate permission_cache in OpenACS 5.10*

§ Cache partitioning:
use different caches based on key values (OpenACS 5.10
supports different partitioning strategies as config options)

Cache Transactions (1/2)

§ Motivation:

db_transaction {

Create service contracts

auth::authentication::create_contract

auth::password::create_contract

auth::registration::create_contract

auth::get_doc::create_contract
. . .

)

§ Potential problems:
§ What happens with cached values created from API-calls, when

transaction fails (e.g. in third API call)
§ Consequence: cache poisoning
§ Breaking isolation
§ Misbehavior is hard to debug

Cache

Cache Transactions (2/2)

§ NaviServer API support (NaviServer 4.99.16)

ns_cache_transaction_begin

ns_cache_transaction_commit

ns_cache_transaction_rollback

§ Integrated with OpenACS 5.10*:
§ Automatically performed in db_transaction

and xo* counterparts
§ Rollback statistics in nsstats:

Multiple Threads Accessing a Mutex-
protected Resource

§ When mutex (e.g. t2) tries to get a lock on an already locked resource
(e.g. locked by t1), the mutex has to wait until this lock is finished.

§ When multiple threads try locks: high contention, increasing wait times
§ Waiting time can pile up

Read/Write Locks

§ Distinction in API between “Reader” and “Writer” of a resource
§ Multiple concurrent readers are allowed (t*rd) without waiting => improved scalability
§ A writer request has to wait until the currently active readers are finished, behaves then

like a mutex, a next reader (or writer) has to wait, until writer has finished.
§ On write operations a Write-Lock of a RW-Lock is more expensive than a mutex.
§ RW-locks are better, when there are substantially more reader than writer requests

Reader

Writer

Performance comparison with different
read/write load patterns

Best performance increase with many concurrent read operations

Busy locks with Mutex vs.
RWLocks on nsv

With mutex (after 24h)

locks busy

nsv:3:openacs.org 4.71M 1.3K

nsv:6:openacs.org 4.88M 1.03K

nsv:2:openacs.org 3.37M 784

nsv:7:openacs.org 9.11M 755

nsv:5:openacs.org 2.88M 460

With rwlocks (after 24h)

nsv:7:openacs.org 7.22M 0

nsv:6:openacs.org 3.92M 143

nsv:3:openacs.org 3.31M 1

nsv:2:openacs.org 2.23M 16

nsv:5:openacs.org 2.16M 0

Substantially reduced busy operations.

Most nsv operations on OpenACS
instances are read operations

Write percentage usually very little!

RWLocks used for:
• nsv (shared variables)
• URLspace (trie for managing URLs, using path segments)
• Connection channels

Statistics from nsstats.tcl

Numbers every developer
should know

114 ns time {dict get {a 1 b 2 c 3} b} 100000

156 ns set x 1; time {set x} 100000

160 ns time {set x 1} 100000

163 ns set x 1; time {info exists x} 100000

204 ns time {ns_quotehtml "hello world"} 100000

209 ns time {ns_trim {hello world}} 100000

210 ns set x 1; time {expr {$x + $x}} 100000

212 ns nsv_set foo x 1; time {nsv_get foo x} 100000

235 ns proc foo {x} {return $x}; time {foo 1} 100000

269 ns time {info commands ::db_string} 100000

288 ns time {array set x {a 1 b 2 c 3}} 100000

291 ns time {ns_cache_eval ns:memoize 1 {set x 1}} 100000

303 ns nx::Class create Foo {:public method bar {} {return 0};:create ::foo1}; time {::foo1 bar} 100000

305 ns time {nsv_set foo x 1} 100000

360 ns time {ns_sha1 foo} 100000

513 ns ns_urlspace set -key foo1 /*.adp A; time {ns_urlspace get -key foo1 /static/test.adp} 100000

821 ns time {nx::Object create ::o} 100000

28668 ns time {md5::md5 foo} 100000

30338 ns time {sha1::sha1 foo} 100000

78894 ns time {xo::dc get_value dbqd..qn {select title from acs_objects where object_id=179}} 100000

86132 ns time {db_string dbqd..qn {select title from acs_objects where object_id=179}} 100000

152654 ns time {set F [open /tmp/nix w]; puts $F x; close $F} 10000

2562594 ns time {exec ls /} 1000

nsv get 25% slower than info exists
nsv set similar to array set
ns_cache read between above (0.3µs)
ns_urlspace get is cache *2
… but 100x faster then DB
… REDIS cache time ~1ms

== 2.6 ms ns_udp roundtrip: 1ms

Atomic nsv operations (1/2)

§ Motivation
if {![nsv_exists ARRAY KEY]} {

#
Danger Zone
#

nsv_set ARRAY KEY DEFVALUE]

}
. . .

set oldCmds [nsv_get ARRAY KEY]
#
Danger Zone
#

nsv_set ARRAY $newCmds

§ Race conditions!
§ What happens if similar other code is executed concurrently in a different

thread?
§ Consequence: unreliable code
§ Hard to debug

Atomic nsv operations (2/2)

§ Obtain (old) value from an nsv ARRAY and set it to a new value
(Similar to GETSET in REDIS)

set foo [nsv_set -reset ARRAY KEY NEWVALUE]

§ Obtain a value from an nsv ARRAY and unset it (no new value is provided)

set foo [nsv_set -reset ARRAY KEY]

§ Set a default value for an nsv ARRAY
(Similar to SETNX in REDIS)

nsv_set -default ARRAY KEY DEFAULTVALUE

§ Atomic dict operations
(Similar to “dict” in Tcl)

nsv_dict get|set|exists|… ARRAY KEY …

Some more selected scalability improvements
§ All low level API calls in NaviServer became asynchronous
§ Configurable behavior for request overruns (optional sending 503 on certain pools)
§ Support of multiple driver threads (every driver thread can listen on multiple IP

addresses and ports)
§ Works with >1024 concurrent open connections (COVID tested)
§ Logging commands with high latency

§ Bandwidth management
§ Motivation: high number

of bot-requests on public
sites

§ Bot-requests can be assigned
to special request queues

§ These queues can be configured

§ with max transmission rates

§ few connection threads

§ Bandwidth metering of running
requests

PAGE 20

More Scalability improvements

§ More strict input handling
§ ns_parseurl, ns_parsehostport
§ Dealing with invalid UTF-8
§ Fallback charsets

§ Improve handling of external services
§ Increasingly more requests depend on external resources (e.g. cloud services)
§ Log-files for outgoing HTTP/HTTPS requests

§ Misc
§ Tcl API for URLspace (with context filters 4.99.19)
§ Unit support for API and configuration (e.g. 1s, 100µs, … 1KB, 1.5MB, …)
§ Same collating support for Tcl as in PostgreSQL
§ Crypto support (OCSP Stapling, SNI, SCRYPT, SCRAM, key management EC, MD,

HMAC, 20+ digest algorithms) through integration with OpenSSL
§ More NaviServer modules: UDP support, COAP, letsencrypt, revproxy, nsshell…

PAGE 21

Other NaviServer improvements

ns_http … -timeout 1.5ms …

Log entry: … invalid UTF-8: ‘xx|\xe6b|yy'

Master Thesis of Philip Minić:
§ Prototype version of NaviServer with HTTP/2 support
§ Better performance than Apache and nginx (synthetic data, chromium)

PAGE 22

Experiment: HTTP/2 for NaviServer

Medium filesSmall files Large files

Not done yet:
- Integration with http-client, existing API
- Pull requests for OpenSSL with HTTP/3 (QUIC)

maybe included in OpenSSL 3.1

§ Substantially improved concurrency
§ Cache partitioning
§ RWLocks instead of Mutex locks
§ …. Better performance means better use of existing cores

§ Development bases on real-world necessities

§ Mostly OpenACS based large scale applications
for us (running on year average ~100 threads,
requests, background jobs, video streaming, etc. in
latency sensitive applications)

§ Many development based on vulnerability scanners

§ Others have very different usage patterns

§ Zoran: windows systems, enterprise backup

§ John Buckman: coffee machine
….

§ Questions?

PAGE 23

Summary

Institute for Information Systems and
New Media
Welthandelsplatz 1, 1020 Vienna, Austria

UNIV.PROF. DR. Gustaf Neumann

T +43-1-313 36-4671
Gustaf.neumann@wu.ac.at
www.wu.ac.at

PAGE 24

