
Taking Tcl Networking

to the Next Level

Reinhard Max <max@tclers.tk>

30.06.22

2

About myself

● First contact with Tcl around 1996
● 25 Years @ SUSE
● Tcl/Tk maintainer since 1998
● SQLite, PostgreSQL, ntp, chrony, OpenVPN, ClamAV etc.
● Worked on the [socket] command before

30.06.22

3

Questions (Ouster-Vote)

● Who has used the [socket] command before
● Who has done network communication in C at the syscall level

(socket(), bind(), connect(), accept(), …)?
● Who wants UDP in the core?
● Who would like to see support for other types of sockets

(unix domain, raw, …)?

30.06.22

4

● 1995/96 – Jacob Levy implements the [socket] command to bring
TCP communication to Tcl 7.6.

● Improvements by Scott Stanton, Mo DeJong and others.
● Mac improvements by Daniel Steffen and Jim Ingham
● 2009/10 – Reinhard Max rewrites parts of [socket] for 8.6 to support

IPv6 and multiple IP addresses per Domain.
● Harald Oehlmann and others help to get -async and Windows

notifications right.

Some History …
(from the changes file)

30.06.22

5

● Client:
socket ?-async? host port

● Server:
socket -server callback port

proc callback {sock host port} {
 # put client handling here
}

What we have now (TCP)

30.06.22

6

“
”

Quote (unknown author)

Compared to other languages Tcl’s [socket] command makes
network communication so easy that you always think you
missed something.

30.06.22

7

“
”

Quote (many Tclers)

But there is still no UDP in the core in 2022!

30.06.22

8

Having a closer look

● [socket] pros
– Very simple to use, more convenient than the socket() API in C
– Cross platform abstraction
– Well established
– Has been used to implement all sorts of TCP based protocols from

HTTP (in the core http package) to XMPP (in TkChat).

30.06.22

9

Having a closer look

● [socket] cons
– TCP only
– Implemented using stream oriented Tcl channels

=> not a good fit for datagram oriented communication.
– Limited access to setsockopt() etc.
– No separation between name resolution and socket handling
– Name resolution is always synchronous

30.06.22

10

● Several UDP extensions, but not in the core:
– TclUDP, Tcl-dp, Scotty, ceptcl, …

● Had no closer look at them, as I wanted a generic solution that goes
beyond UDP.

● Some of them don't support IPv6 or support it only as an
afterthought.

What we have now (UDP)

30.06.22

11

My idea to get there

● Create a thin layer of C code to make the the whole socket() API available
in Tcl without any artificial limitations regarding protocols, etc.

● Not intended to be used directly by application code, but to...
– reimplement the [socket] command in Tcl (at least as a PoC)
– be a building block for similar convenience functions (in pure Tcl) for

other protocols and use cases.

30.06.22

12

My idea to get there (2)

● Sockets are not channels, but can be wrapped as such (e.g. refchan).
● Instead, the send and receive functions work with raw byte strings.
● Name resolution is separate from actual socket handling

– allows for asynchronous resolution by running getaddrinfo in a thread
– allows using alternative resolvers, e.g. event-driven

30.06.22

13

Wrapping the socket API

% getaddrinfo host port
Returns the relevant members of struct addrinfo as a Tcl list:
address family, socktype, protocol, IP(v6) address, and port number.
% showaddrinfo addrinfo
Debugging function to turn the numbers back into symbolic names.
% socket addrinfo
Uses the first three members of an addrinfo list to create a socket
% connect socket addrinfo

bind, listen, accept, sendto, recvfrom, shutdown,
(get|set)sockopt, get(sock|peer)name, setblocking

30.06.22

14

Symbolic Constants

(preliminary)

● e.g. SOCK_STREAM, AF_INET, IPPROTO_TCP
● Get parsed from preprocessed system headers and generated into alias

commands:
interp alias {} SOCK dict get {STREAM 1 DGRAM 2 …}
interp alias {} rSOCK dict get {1 STREAM 2 DGRAM …}

● % SOCK DGRAM
2
% rSOCK 3
RAW

● Q&D solution that might change.

30.06.22

15

Examples

% getaddrinfo -type [SOCK STREAM] example.com 80
{10 1 6 2606:…:1946 80} {2 1 6 93.184.216.34 80}

% showaddrinfo {2 1 6 93.184.216.34 80}
INET STREAM TCP 93.184.216.34 80

% socket {2 1 6 93.184.216.34 80}
6

% connect 6 {2 1 6 93.184.216.34 80}

% getsockname 6
192.168.178.67 192.168.178.67 52020

% close 6

30.06.22

16

Reimplementing [socket] in Tcl

● Q&D code to build a [socket] drop-in replacement in Tcl
● Implements everything except for asynchronous connections
● Passes the core’s socket.test
● Revealed some missing pieces in refchan

30.06.22

17

Shortcomings of refchan

● Does not allow channels that are neither readable nor writable.
● Will be fixed in core shortly.

● Does not allow half-close of bidirectional channels (shutdown()).
● Will work with Andreas Kupries to get this in.

30.06.22

18

Finally: UDP and local sockets!

● => Live demo

30.06.22

19

Lessons learned & ToDo

● getaddrinfo only supports IP(v6), but no unix domain and other protocol
families.

● addrinfo arguments are too inflexible in some cases, alternatives should
be allowed.

● Use better tokens for sockets than the underlaying file descriptor number.
● UDP and UNIX domain sockets have only received minimal testing
● Out-of-band data (e.g. for TCP) has not been tested yet, but might just

work.
● Linux supports way more socket options than OSX.

30.06.22

20

Asking for Help!

● Windows support, esp. notifications. (Harald?)

● Improving/fixing refchan. (Andreas?)

● Testing, esp. on non-Linux platforms

● Better ideas for the representation and conversion of symbolic constants

● Better ideas for the representation of socket tokens.

● Better ideas for the representation of addresses in places where

getaddrinfo results are not always a good match.

● Performance comparison between the C-coded and Tcl-coded [socket]

implementations and improvements on the Tcl code, if needed.

● More convenience code on top of the new API!

Questions & Answers

Comments & Suggestions

https://chiselapp.com/user/rmax/repository/sock

Reinhard Max <max@tclers.tk>

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21

