
GitLab CI pipelines for OpenACS
development

Héctor Romojaro Gómez

Learn@WU Systemmanager

OpenACS/EuroTcl 2022

mailto:Learn@WU

 One of the world’s most intensively used E-learning platforms
in higher education

 Based on OpenACS + NaviServer
 Started in 2002, designed for scalability

Some numbers:
 Up to 15 Mio hits and 3,3 Mio page impressions/day from

registered users
 Up to 2500 concurrent users, over 250 views/sec
 Average response time on views less than 0.05 sec
 More than 120.000 learning resources have been developed since

2002
 Single instance

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 2

Learn@WU

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 3

Back in 2016...

• No Upstream merging

• Package upgrades have been
done occasionally

• Divergence increased over time

• It made more complex to
integrate from the community

• Bug Fixes

• New features

• Security fixes

• Performance
improvements

• Tests run manually

2002 2016

D
iv

er
ge

nc
e

LE
ARN

OpenACS

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 4

Numbers

Divergence size as of March 2016

• git diff ...

• Core packages

• Files changed: 5514

• Insertions: 100222

• Deletions: 272529

• Non Core packages

• Files changed: 4320

• Insertions: 103791

• Deletions: 196018

• Ignoring catalog files, ajaxhelper,
white spaces and local packages. acs-core packages non-core packages

0

50000

100000

150000

200000

250000

300000

Files Insertions Deletions

 Reduce divergency to the minimum necessary.
 Integrate OpenACS upstream code efficiently

– Use Github’s OpenACS repository as a remote for
our Git repository

– Import new upstream commits quickly and easily

– Merge OpenACS code with ours keeping the history
of both

 Increase Software Quality

– Decrease duplicity and redundancy

– Trigger automated tests automatically

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 5

The Challenge

 Use two Git remotes (origin for local code
and github for upstream)

 Split non-core packages into separate
repositories, matching upstream’s Github
structure

 Initial merge on common ancestor

– Find the upstream branch more
similar to downstream

 Subsequent merges are easy and fast
 myrepos to manage multiple repositories

easily
 GitLab local instance for CI pipelines

– Trigger automated tests on every
new commit in the integration
branch, including upstream
merges.

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 6

The Solution

merge
 pull

 push

Downstream
(origin remote)

Upstream
(github remote)

Downstream
(local copy)

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 7

Integrated git structure

oacs-5-9

oacs-5-10

oacs-5-10

oacs-5-9

acs-core
(remote github)

acs-core
(local copy)

oacs-5-9

oacs-5-10

acs-events
(remote github)

oacs-5-9

oacs-5-10

”n” package
(remote github)

integration

integration

acs-core
(remote origin)

oacs-5-10

oacs-5-9

acs-events
(local copy)

integration

oacs-5-10

oacs-5-9

”n”package
(local copy)

integration

integration

acs-events
(remote origin)

integration

”n” package
(remote origin)

• 1 repository for acs-core

• ”n” repositories for non-core
packages

• n = 66

• 2 remotes per repository

• Github

• Origin

• All branches available from
local copy

• oacs-x-y from github

• integration from origin

• oacs-x-y is merged into
integration daily

• All local development is in
integration

• All history, local and
upstream, is preserved

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 8

Directory structure

 Super-repository stores
the myrepos and
common Gitlab CI config.

 acs-core repository
contains OpenACS core
and local packages with
no upstream
counterpart.

 non-core repositories,
one per non-core
package.

 Web-based DevOps lifecycle tool
 Git repository manager
 Integrated Web IDE
 Free software (Gitlab CE), with an open-core development model
 Private repositories, groups, forks, permissions, stats…
 On premises
 Store CI/CD config (gitlab-ci.yml) in super-repository
 Integrated CI/CD pipelines

– Every change in the integration branch triggers the pipeline.

– GitLab runners execute the jobs in docker containers with a running
NaviServer

– Jobs are run in stages

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 9

GitLab

 Run by GitLab runners on docker
containers with a running NaviServer

 Access to a shared PG instance,
where the DB pool is

 ci-* scripts on /www/ accessed via
cURL by GitLab

 Results output using ns_write
 Info retrieved via grep from server

logs

– Success of the job

– egrep -wq 'ci-tests:... '
 Artifacts

– error.log

– rebuild_db

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 10

Job internals

 Try to avoid DB rebuild

 Gitlab runners in docker containers execute
jobs in stages:

1. Build (DB and source tree setup)

2. Test coverage

3. Package upgrade

4. Package safe tests (production_safe)

5. Package message catalog import

6. Global package upgrade

7. Global safe tests (production_safe)

8. Global message catalog import

9. Package unsafe tests

10. Global unsafe tests

11. Cleanup (DB rebuild if tainted and
source tree removal)

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 11

Stages: Order

 Source tree retrieval using myrepos
 Database reservation

– Thinned out production database (~270G)

– Picked from a pool of databases
● gitlab-pipeline-free-* renamed to

gitlab-pipeline-$PIPELINE_ID
– Manage concurrency with db-mutex runner

● Only one runner is tagged db-mutex
● db-mutex is the only runner allowed to

reserve/regenerate DB

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 12

Stages: Build

 Public procs covered by
automated tests

 Fail if coverage decreases
(enforces policy)

 New on 5.10

– aa::coverage::*

– /test/admin/proc-coverage

– Global and per package

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 13

Stages: Coverage

 Upgrades a single or all possible OpenACS packages
 Fail if dependency error or unsuccessful upgrade
 Taints DB if upgrade is performed, triggering a rebuild

from the template on the Cleanup stage
 APM api

– apm_package_*

– apm_scan_packages

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 14

Stages: Upgrade

 Imports the message catalog files of a single or all
possible packages.

 Detects conflicts.
 Detects changes on message keys (add, delete, update).
 Fail if changes or conflicts are detected without a

package upgrade (enforces policy)
 Taints DB if changes are performed, triggering a rebuild

from the template on the Cleanup stage.
 acs-lang api

– lang::catalog::import

– lang::message::conflict_count

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 15

Stages: Message catalog import

 Runs tests from acs-automated-testing on a single or all
possible packages

 Fail if any test fails
 Taints DB if non production_safe tests are run
 Run as test user

– acs::test::user::*
 AA api

– aa_runseries

– nsv_get aa_test cases

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 16

Stages: Tests

 Deletes the source tree
 Restores or rebuilds DB

– If DB is not tainted, just put it back in the pool
● Rename gitlab-pipeline-$PIPELINE_ID to

gitlab-pipeline-free-*
– If DB is tainted, recreate it from the template DB

– Manage concurrency with the db-mutex runner

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 17

Stages: Cleanup

 All work is commited to the integration branch
 Latest upstream code (5.10 branch) is merged into the integration branch daily
 Every push to the integration branch triggers the pipeline
 Internal releases every two weeks

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 18

...and the present!

Develop
local branches

Integration

Production
Working copy deployed on testing instance

Production

Github
github/oacs-5-...

$ git/mr production $ git/mr sync

$ git merge
$ git cherry-pick

$ git merge

$ git push
$ git tag $ mr update

$ git
cherry-pick

DevelopmentDevelopment TestingTesting Release & HotfixRelease & Hotfix
Time

Remote branch
Working copy

Testing

$ git
cherry-pick

$ git
cherry-pick

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 19

Thanks for watching!

Some unnecessary links
 LEARN: https://learn.wu.ac.at/
 OpenACS: https://openacs.org
 OpenACS on Github: https://github.com/openacs
 NaviServer: http://naviserver.sourceforge.io/:
 myrepos: https://myrepos.branchable.com/
 GitLab: https://about.gitlab.com/

https://learn.wu.ac.at/
https://openacs.org/
https://github.com/openacs
http://naviserver.sourceforge.io/
https://myrepos.branchable.com/
https://about.gitlab.com/

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19

