
GitLab CI pipelines for OpenACS
development

Héctor Romojaro Gómez

Learn@WU Systemmanager

OpenACS/EuroTcl 2022

mailto:Learn@WU

 One of the world’s most intensively used E-learning platforms
in higher education

 Based on OpenACS + NaviServer
 Started in 2002, designed for scalability

Some numbers:
 Up to 15 Mio hits and 3,3 Mio page impressions/day from

registered users
 Up to 2500 concurrent users, over 250 views/sec
 Average response time on views less than 0.05 sec
 More than 120.000 learning resources have been developed since

2002
 Single instance

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 2

Learn@WU

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 3

Back in 2016...

• No Upstream merging

• Package upgrades have been
done occasionally

• Divergence increased over time

• It made more complex to
integrate from the community

• Bug Fixes

• New features

• Security fixes

• Performance
improvements

• Tests run manually

2002 2016

D
iv

er
ge

nc
e

LE
ARN

OpenACS

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 4

Numbers

Divergence size as of March 2016

• git diff ...

• Core packages

• Files changed: 5514

• Insertions: 100222

• Deletions: 272529

• Non Core packages

• Files changed: 4320

• Insertions: 103791

• Deletions: 196018

• Ignoring catalog files, ajaxhelper,
white spaces and local packages. acs-core packages non-core packages

0

50000

100000

150000

200000

250000

300000

Files Insertions Deletions

 Reduce divergency to the minimum necessary.
 Integrate OpenACS upstream code efficiently

– Use Github’s OpenACS repository as a remote for
our Git repository

– Import new upstream commits quickly and easily

– Merge OpenACS code with ours keeping the history
of both

 Increase Software Quality

– Decrease duplicity and redundancy

– Trigger automated tests automatically

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 5

The Challenge

 Use two Git remotes (origin for local code
and github for upstream)

 Split non-core packages into separate
repositories, matching upstream’s Github
structure

 Initial merge on common ancestor

– Find the upstream branch more
similar to downstream

 Subsequent merges are easy and fast
 myrepos to manage multiple repositories

easily
 GitLab local instance for CI pipelines

– Trigger automated tests on every
new commit in the integration
branch, including upstream
merges.

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 6

The Solution

merge
 pull

 push

Downstream
(origin remote)

Upstream
(github remote)

Downstream
(local copy)

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 7

Integrated git structure

oacs-5-9

oacs-5-10

oacs-5-10

oacs-5-9

acs-core
(remote github)

acs-core
(local copy)

oacs-5-9

oacs-5-10

acs-events
(remote github)

oacs-5-9

oacs-5-10

”n” package
(remote github)

integration

integration

acs-core
(remote origin)

oacs-5-10

oacs-5-9

acs-events
(local copy)

integration

oacs-5-10

oacs-5-9

”n”package
(local copy)

integration

integration

acs-events
(remote origin)

integration

”n” package
(remote origin)

• 1 repository for acs-core

• ”n” repositories for non-core
packages

• n = 66

• 2 remotes per repository

• Github

• Origin

• All branches available from
local copy

• oacs-x-y from github

• integration from origin

• oacs-x-y is merged into
integration daily

• All local development is in
integration

• All history, local and
upstream, is preserved

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 8

Directory structure

 Super-repository stores
the myrepos and
common Gitlab CI config.

 acs-core repository
contains OpenACS core
and local packages with
no upstream
counterpart.

 non-core repositories,
one per non-core
package.

 Web-based DevOps lifecycle tool
 Git repository manager
 Integrated Web IDE
 Free software (Gitlab CE), with an open-core development model
 Private repositories, groups, forks, permissions, stats…
 On premises
 Store CI/CD config (gitlab-ci.yml) in super-repository
 Integrated CI/CD pipelines

– Every change in the integration branch triggers the pipeline.

– GitLab runners execute the jobs in docker containers with a running
NaviServer

– Jobs are run in stages

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 9

GitLab

 Run by GitLab runners on docker
containers with a running NaviServer

 Access to a shared PG instance,
where the DB pool is

 ci-* scripts on /www/ accessed via
cURL by GitLab

 Results output using ns_write
 Info retrieved via grep from server

logs

– Success of the job

– egrep -wq 'ci-tests:... '
 Artifacts

– error.log

– rebuild_db

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 10

Job internals

 Try to avoid DB rebuild

 Gitlab runners in docker containers execute
jobs in stages:

1. Build (DB and source tree setup)

2. Test coverage

3. Package upgrade

4. Package safe tests (production_safe)

5. Package message catalog import

6. Global package upgrade

7. Global safe tests (production_safe)

8. Global message catalog import

9. Package unsafe tests

10. Global unsafe tests

11. Cleanup (DB rebuild if tainted and
source tree removal)

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 11

Stages: Order

 Source tree retrieval using myrepos
 Database reservation

– Thinned out production database (~270G)

– Picked from a pool of databases
● gitlab-pipeline-free-* renamed to

gitlab-pipeline-$PIPELINE_ID
– Manage concurrency with db-mutex runner

● Only one runner is tagged db-mutex
● db-mutex is the only runner allowed to

reserve/regenerate DB

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 12

Stages: Build

 Public procs covered by
automated tests

 Fail if coverage decreases
(enforces policy)

 New on 5.10

– aa::coverage::*

– /test/admin/proc-coverage

– Global and per package

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 13

Stages: Coverage

 Upgrades a single or all possible OpenACS packages
 Fail if dependency error or unsuccessful upgrade
 Taints DB if upgrade is performed, triggering a rebuild

from the template on the Cleanup stage
 APM api

– apm_package_*

– apm_scan_packages

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 14

Stages: Upgrade

 Imports the message catalog files of a single or all
possible packages.

 Detects conflicts.
 Detects changes on message keys (add, delete, update).
 Fail if changes or conflicts are detected without a

package upgrade (enforces policy)
 Taints DB if changes are performed, triggering a rebuild

from the template on the Cleanup stage.
 acs-lang api

– lang::catalog::import

– lang::message::conflict_count

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 15

Stages: Message catalog import

 Runs tests from acs-automated-testing on a single or all
possible packages

 Fail if any test fails
 Taints DB if non production_safe tests are run
 Run as test user

– acs::test::user::*
 AA api

– aa_runseries

– nsv_get aa_test cases

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 16

Stages: Tests

 Deletes the source tree
 Restores or rebuilds DB

– If DB is not tainted, just put it back in the pool
● Rename gitlab-pipeline-$PIPELINE_ID to

gitlab-pipeline-free-*
– If DB is tainted, recreate it from the template DB

– Manage concurrency with the db-mutex runner

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 17

Stages: Cleanup

 All work is commited to the integration branch
 Latest upstream code (5.10 branch) is merged into the integration branch daily
 Every push to the integration branch triggers the pipeline
 Internal releases every two weeks

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 18

...and the present!

Develop
local branches

Integration

Production
Working copy deployed on testing instance

Production

Github
github/oacs-5-...

$ git/mr production $ git/mr sync

$ git merge
$ git cherry-pick

$ git merge

$ git push
$ git tag $ mr update

$ git
cherry-pick

DevelopmentDevelopment TestingTesting Release & HotfixRelease & Hotfix
Time

Remote branch
Working copy

Testing

$ git
cherry-pick

$ git
cherry-pick

GITLAB CI PIPELINES FOR OPENACS DEVELOPMENTPAGE 19

Thanks for watching!

Some unnecessary links
 LEARN: https://learn.wu.ac.at/
 OpenACS: https://openacs.org
 OpenACS on Github: https://github.com/openacs
 NaviServer: http://naviserver.sourceforge.io/:
 myrepos: https://myrepos.branchable.com/
 GitLab: https://about.gitlab.com/

https://learn.wu.ac.at/
https://openacs.org/
https://github.com/openacs
http://naviserver.sourceforge.io/
https://myrepos.branchable.com/
https://about.gitlab.com/

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19

