
Modern Application
Development in

Tcl/Tk

Tcl Tutorial Team

2

Modern Application Development in Tcl/Tk

Tcl Tutorial Team

July 3, 2017

2

Contents

1 Getting started 1

1.1 Introduction . 1

1.2 Running Tcl . 2

1.3 Simple Text Output . 3

1.4 Assigning values to variables . 5

1.5 Evaluation and Substitutions 1: Grouping arguments with ”” . . 6

1.6 Evaluation and Substitutions 2: Grouping arguments with . . . 8

1.7 Evaluation and Substitutions 3: Grouping arguments with [] . . . 9

1.8 Results of a command - Math 101 10

1.9 Computers and numbers . 16

2 Flow control 21

2.1 Numeric Comparisons 101 - if . 21

2.2 Textual Comparison - switch . 22

2.3 Looping 101 - While loop . 23

2.4 Looping 102 - For and incr . 25

2.5 Adding new commands to Tcl - proc 27

2.6 Variations in proc arguments and return values 28

2.7 Variable scope - global and upvar 30

3 Data types 33

3.1 Tcl Data Structures 101 - The list 33

3.2 Adding and Deleting members of a list 35

3.3 More list commands - lsearch, lsort, lrange 37

3.4 Simple pattern matching - ”globbing” 38

3.5 String Subcommands - length index range 39

3.6 String comparisons - compare match first last wordend 39

3.7 Modifying Strings - tolower, toupper, trim, format 42

3.8 Example . 43

3.9 Regular Expressions 101 . 44

3.10 More Examples Of Regular Expressions 46

3.11 More Quoting Hell - Regular Expressions 102 50

3.12 Associative Arrays. 52

3.13 More Array Commands - Iterating and use in procedures 56

3.14 Dictionaries as alternative to arrays 59

i

ii CONTENTS

4 Input and Output 63
4.1 File Access 101 . 63
4.2 Communicating with other programs - socket, fileevent 66

5 Input and Output 69
5.1 Learning the existence of commands and variables - info 69
5.2 State of the interpreter - info . 72
5.3 Information about procs - info 74

6 Modularization - source 77
6.1 Modularization - source . 77
6.2 Building reusable libraries - packages and namespaces 78

7 Further topics 85
7.1 Creating Commands - eval . 85
7.2 More command construction - format, list 86
7.3 Substitution without evaluation - format, subst 88
7.4 Changing Working Directory - cd, pwd 90
7.5 Debugging and Errors - errorInfo errorCode catch error return . 91
7.6 More Debugging - trace . 94
7.7 Command line arguments and environment strings 97
7.8 Timing scripts . 98
7.9 Channel I/O: socket, fileevent, vwait 99
7.10 Time and Date - clock . 101
7.11 More channel I/O - fblocked and fconfigure 103
7.12 Child interpreters . 107

Chapter 1

Getting started

1.1 Introduction

Welcome to the Tcl tutorial. We wrote it with the goal of helping you to learn
Tcl. It is aimed at those who have some knowledge of programming, although
you certainly don’t have to be an expert. The tutorial is intended as a companion
to the Tcl manual pages which provide a reference for all Tcl commands.

It is divided into brief sections covering different aspects of the language.
Depending on what system you are on, you can always look up the reference
documentation for commands that you are curious about. On Unix for example,
man while would bring up the man page for the while command.

Each section is accompanied by relevant examples showing you how to put
to use the material covered.

Additional Resources

The Tcl community is an exceedingly friendly one. It’s polite to try and figure
things out yourself, but if you’re struggling, we’re more than willing to help.
Here are some good places to get help:

• The comp.lang.tcl newsgroup. Accessible via a newsreader, or Google
Groups.

• The Wiki (http://wiki.tcl.tk) has a great deal of useful code, examples
and discussions of the finer points of Tcl usage.

• If you need help right away, there is often someone on the #tcl channel
on irc.freenode.net who can help you out, but please don’t be impatient if
no one can help you instantly - if you need that level of support, consider
hiring a consultant.

• There are several recommended books for those who wish to gain more in-
depth knowledge of Tcl. Clif Flynt (http://noucorp.com/Clif.html),
the original author of this tutorial is also the author of Tcl/Tk: A De-
veloper’s Guide (http://www.msen.com/~clif/DevGuide.html). Other
popular books: Practical Programming in Tcl and Tk (http://www.beedub.
com/book/).

1

http://wiki.tcl.tk
http://noucorp.com/Clif.html
http://www.msen.com/~clif/DevGuide.html
http://www.beedub.com/book/
http://www.beedub.com/book/

2 CHAPTER 1. GETTING STARTED

Credits

Thanks first and foremost to Clif Flynt for making his material available under
a BSD license. The following people also contributed:

• Neil Madden (http://www.cs.nott.ac.uk/~nem)

• Arjen Markus

• David N. Welton (http://www.dedasys.com/davidw)

Of course, we also welcome comments and suggestions about how it could
be improved - or if it’s great the way it is, we don’t mind a bit of thanks, either!

1.2 Running Tcl

When you have installed Tcl, the program you will then call to utilize it is
tclsh. For instance, if you write some code to a file ”hello.tcl”, and you want
to execute it, you would do it like so: tclsh hello.tcl. Depending on the
version of Tcl installed, and the operating system distribution you use, the
tclsh program may be a link to the real executable, which may be named
tclsh8.6 or tclsh86.exe on Microsoft Windows.

The tclsh program runs Tcl programs but it also allows interactive use:
You can either start it with a script file on the command line, in which case it
runs the script to completion and then exits, or you can start it without any
arguments, in which case you get an interactive prompt, usually a \% symbol
where you type in commands. Tcl will then execute and display the result, or
any error messages that result. To exit the interpreter, type exit and press
Return. For example:

Playing around with the interactive interpreter is a great way to learn how
to use Tcl. Most Tcl commands will produce a helpful error message explaining
how they are used if you just type in the command with no arguments. You
can get a list of all the commands that your interpreter knows about by typing
info commands.

http://www.cs.nott.ac.uk/~nem
http://www.dedasys.com/davidw

1.3. SIMPLE TEXT OUTPUT 3

In the various lessons we will use the conventions that interactive sessions
are characterised by the \% prompt. The commands are preceded by the percent
sign and the result is shown directly below, as it would appear if you type them
in in tclsh.

The tclsh executable is just one way of starting a Tcl interpreter. Another
common executable, which may be installed on your system, is the wish, or
WIndowing SHell. This is a version of Tcl that automatically loads the Tk
extension for building graphical user interfaces (GUIs). This tutorial does not
cover Tk, and so we will not use the wish interpreter here. Other options are
also available, providing more functional environments for developing and de-
bugging code than that provided by the standard tclsh. One very popular
choice is the TkCon (http://tkcon.sourceforge.net/) enhanced interpreter,
written by Jeff Hobbs. The Eclipse IDE offers good Tcl support, in the form of
the DLTK (http://www.eclipse.org/dltk) extension, and the Tcl’ers Wiki
offers a list of IDEs with Tcl support (http://wiki.tcl.tk/998) and a com-
prehensive catalogue of Tcl source code editors (http://wiki.tcl.tk/1184).
Don’t panic, though! If you don’t know how to use a sophisticated development
environment, it is still very easy to write Tcl code by hand in a simple text
editor (such as Notepad).

1.3 Simple Text Output

The traditional starting place for a tutorial is the classic ”Hello, World” pro-
gram. Once you can print out a string, you’re well on your way to using Tcl for
fun and profit!

The command to output a string in Tcl is the puts command.
A single word after the puts command will be printed to the standard output

device. Normally the next text will be printed on the next line. The two
commands

puts Hello,

puts World

produces:

Hello,

World

To have them printed on the same line, use the -nonewline option:

puts -nonewline Hello,

puts World

But as the string we want to print has more than one word, it will be easier
to enclose the string in double quotes or braces (). A set of words enclosed in
quotes or braces is treated as a single unit, while words separated by whitespace
are treated as multiple arguments to the command:

puts "Hello, World"

Quotes and braces can both be used to group several words into a single
unit. However, they actually behave differently. In the next lesson you’ll start

http://tkcon.sourceforge.net/
http://www.eclipse.org/dltk
http://wiki.tcl.tk/998
http://wiki.tcl.tk/1184

4 CHAPTER 1. GETTING STARTED

to learn some of the differences between their behaviors. Note that in Tcl, single
quotes are not significant, as they are in other programming languages such as
C, Perl and Python.

Many commands in Tcl (including puts) can accept multiple arguments. If
a string is not enclosed in quotes or braces, the Tcl interpreter will consider
each word in the string as a separate argument, and pass each individually to
the command.

A full command in Tcl is the command name - the first word, in the example
above puts - followed by a list of words terminated by a newline or semicolon.
Tcl comments are indicated by a \# at a position where Tcl expects a new
command (i.e., following a newline or semicolon), and continue until the end of
the line.

Example

puts "Hello, World - In quotes" ;# This is a comment after the command.

This is a comment at beginning of a line

puts {Hello, World - In Braces}

puts "This is line 1"; puts "this is line 2"

puts "Hello, World; - With a semicolon inside the quotes"

Words don’t need to be quoted unless they contain white space:

puts HelloWorld

Result:

Hello, World - In quotes

Hello, World - In Braces

This is line 1

this is line 2

Hello, World; - With a semicolon inside the quotes

HelloWorld

As stated, comments may appear wherever a new command can be expected.
The following is a syntactic error - there should be a semicolon before the hash-
sign:

puts {Bad comment syntax example} # *Error* - there is no semicolon!

Result:

wrong # args: should be "puts ?-nonewline? ?channelId? string"

while executing

"puts {Bad comment syntax example} # *Error* - there is no semicolon!"

(file "example.tcl" line 1)

This also illustrates the habit of Tcl to inform you about (run-time) errors.
This will be explained later. (Section 7.5)

1.4. ASSIGNING VALUES TO VARIABLES 5

1.4 Assigning values to variables

In Tcl, everything may be represented as a string, although internally it may
be represented as a list, integer, double, or some other type, in order to make
the language fast.

The assignment command in Tcl is set.
When set is called with two arguments, as in:

set fruit Cauliflower

it assigns the value Cauliflower (the second argument) to the variable
fruit (the first argument). set always returns the contents of the variable
named in the first argument. Thus, when set is called with two arguments, it
assigns the second argument to the variable named in the first argument and
then returns the second argument. In the above example, for instance, it would
return ”Cauliflower”, without the quotes.

The first argument to a set command can be either a single word, like fruit
or pi , or it can be a member of an array, like course(first), an element called
”first” in the array ”course”. Technically speaking, arrays in Tcl are associative
arrays. Arrays will be discussed in greater detail later.

set can also be invoked with only one argument. When called with just one
argument, it will return the contents of that argument.

Here’s a summary of the set command.

set varName ?value?

If value is specified, then the contents of the variable varName are set equal to
value.

• If varName consists only of alphanumeric characters, and no parentheses,
it is a scalar variable.

• If varName has the form varName(index) , it is a member of an associative
array.

If you look at the example code, you’ll notice that in the set command
the first argument is typed with only its name, but in the puts statement the
argument is preceded with a \$.

The dollar sign tells Tcl to use the value of the variable - in this case X or Y.
Tcl passes data to subroutines either by name or by value. Commands that

don’t change the contents of a variable usually have their arguments passed by
value. Commands that do change the value of the data must have the data
passed by name.

Example

set X "This is a string"

set Y 1.24

puts $X

puts $Y

6 CHAPTER 1. GETTING STARTED

puts "..............................."

set label "The value in Y is: "

puts "$label $Y"

Result:

This is a string

1.24

...............................

The value in Y is: 1.24

1.5 Evaluation and Substitutions 1: Grouping
arguments with ””

This lesson is the first of three which discuss the way Tcl handles substitution
during command evaluation.

In Tcl, the evaluation of a command is done in 2 phases. The first phase
is a single pass of substitutions. The second phase is the evaluation of the
resulting command. Note that only one pass of substitutions is made. Thus in
the command

puts $varName

the contents of the variable varName are substituted for \$varName, and then
the command is executed. Assuming we have set varName to "Hello World",
the sequence would look like this:

puts $varName --> puts "Hello World"

, which is then executed and prints out Hello World.
During the substitution phase, several types of substitutions occur.
A command within square brackets ([]) is replaced with the result of the

execution of that command. (This will be explained more fully in the lesson
Results of a Command - Math 101. (Section 1.8))

Words within double quotes or braces are grouped into a single argument.
However, double quotes and braces cause different behavior during the substitu-
tion phase. In this lesson, we will concentrate on the behavior of double quotes
during the substitution phase.

Double quotes

Grouping words within double quotes allows substitutions to occur within the
quotations - or, in fancier terms, ”interpolation”. The substituted group is then
evaluated as a single argument. Thus, in the command:

puts "The current stock value is $varName"

the current contents of varName are substituted for $varName, and then the
entire string is printed to the output device, just like the example above.

1.5. EVALUATION AND SUBSTITUTIONS 1: GROUPING ARGUMENTSWITH ””7

Backslashes

In general, the backslash (
) disables substitution for the single character immediately following the back-
slash. Any character immediately following the backslash will stand without
substitution.

However, there are specific ”Backslash Sequence” strings which are replaced
by specific values during the substitution phase. The following backslash strings
will be substituted as shown below.

String Output Hex value
\\a Audible Bell 0x07
\\b Backspace 0x08
\\f Form Feed (clear screen) 0x0c
\\n New Line 0x0a
\\r Carriage Return 0x0d
\\t Tab 0x09
\\v Vertical Tab 0x0b
\\0dd Octal Value d is a digit from 0-7
\\uHHHH H is a hex digit 0-9,A-F,a-f.

This represents a 16-bit Unicode character.
\\xHH.... Hexadecimal Value H is a hex digit 0-9,A-F,a-f.

Note that the
x substitution ”keeps going” as long as it has hexadecimal digits, and only uses
the last two, meaning that
xaa and
xaaaa are equal, and that
xaaAnd anyway will ”eat” the A of ”And”. Using the
u notation is probably a better idea.

The final exception is the backslash at the end of a line of text. This causes
the interpreter to ignore the newline, and treat the text as a single line of text.
The interpreter will insert a blank space at the location of the ending backslash.

Example

set Z Albany

set Z_LABEL "The Capitol of New York is: "

puts "$Z_LABEL $Z" ;# Prints the value of Z

puts "$Z_LABEL \$Z" ;# Prints a literal $Z instead of the value of Z

puts "\nBen Franklin is on the \$100.00 bill"

set a 100.00

puts "Washington is not on the $a bill" ;# This is not what you want

puts "Lincoln is not on the $$a bill" ;# This is OK

puts "Hamilton is not on the \$a bill" ;# This is not what you want

puts "Ben Franklin is on the \$$a bill" ;# But, this is OK

8 CHAPTER 1. GETTING STARTED

puts "\n................. examples of escape strings"

puts "Tab\tTab\tTab"

puts "This string prints out \non two lines"

puts "This string comes out\

on a single line"

Result:

The Capitol of New York is: Albany

The Capitol of New York is: $Z

Ben Franklin is on the $100.00 bill

Washington is not on the 100.00 bill

Lincoln is not on the $100.00 bill

Hamilton is not on the $a bill

Ben Franklin is on the $100.00 bill

................. examples of escape strings

Tab Tab Tab

This string prints out

on two lines

This string comes out on a single line

1.6 Evaluation and Substitutions 2: Grouping
arguments with

During the substitution phase of command evaluation, the two grouping oper-
ators, the brace () and the double quote (”), are treated differently by the Tcl
interpreter.

In the last lesson you saw that grouping words with double quotes allows
substitutions to occur within the double quotes. By contrast, grouping words
within double braces disables substitution within the braces. Characters within
braces are passed to a command exactly as written. The only ”Backslash Se-
quence” that is processed within braces is the backslash at the end of a line.
This is still a line continuation character.

Note that braces have this effect only when they are used for grouping (i.e.
at the beginning and end of a sequence of words). If a string is already grouped,
either with quotes or braces, and braces occur in the middle of the grouped
string (i.e. ”foobar”), then the braces are treated as regular characters with no
special meaning. If the string is grouped with quotes, substitutions will occur
within the quoted string, even between the braces.

Example

set Z Albany

set Z_LABEL "The Capitol of New York is: "

puts "\n................. examples of differences between \" and \{"

1.7. EVALUATION AND SUBSTITUTIONS 3: GROUPING ARGUMENTSWITH []9

puts "$Z_LABEL $Z"

puts {$Z_LABEL $Z}

puts "\n....... examples of differences in nesting \{ and \" "

puts "$Z_LABEL {$Z}"

puts {Who said, "What this country needs is a good $0.05 cigar!"?}

puts "\n................. examples of escape strings"

puts {There are no substitutions done within braces \n \r \x0a \f \v}

puts {But, the escaped newline at the end of a\

string is still evaluated as a space}

Result:

................. examples of differences between " and {

The Capitol of New York is: Albany

$Z_LABEL $Z

....... examples of differences in nesting { and "

The Capitol of New York is: {Albany}

Who said, "What this country needs is a good $0.05 cigar!"?

................. examples of escape strings

There are no substitutions done within braces \n \r \x0a \f \v

But, the escaped newline at the end of a string is still evaluated as a space

1.7 Evaluation and Substitutions 3: Grouping
arguments with []

You obtain the results of a command by placing the command in square brackets
([]). This is the functional equivalent of the back single quote () in sh programming, or using the return value of a function in C.

As the Tcl interpreter reads in a line it replaces all the $variables with their
values. If a portion of the string is grouped with square brackets, then the string
within the square brackets is evaluated as a command by the interpreter, and
the result of the command replaces the square bracketed string.

puts [readsensor [selectsensor]]

• The parser scans the entire command, and sees that there is a command
substitution to perform: readsensor [selectsensor] , which is sent to
the interpreter for evaluation.

• The parser once again finds a command to be evaluated and substituted,
selectsensor

• The fictitious selectsensor command is evaluated, and it presumably
returns a sensor to read.

• At this point, readsensor has a sensor to read, and the readsensor com-
mand is evaluated.

10 CHAPTER 1. GETTING STARTED

• Finally, the value of readsensor is passed on back to the puts command,
which prints the output to the screen.

The exceptions to this rule are as follows:

• A square bracket that is escaped with a
is considered as a literal square bracket.

• A square bracket within braces is not modified during the substitution
phase.

Example

set x abc

puts "A simple substitution: $x\n"

set y [set x "def"]

puts "Remember that set returns the new value of the variable: X: $x Y: $y\n"

set z {[set x "This is a string within quotes within braces"]}

puts "Note the curly braces: $z\n"

set a "[set x {This is a string within braces within quotes}]"

puts "See how the set is executed: $a"

puts "\$x is: $x\n"

set b "\[set y {This is a string within braces within quotes}]"

Note the \ escapes the bracket, and must be doubled to be a

literal character in double quotes

puts "Note the \\ escapes the bracket:\n \$b is: $b"

puts "\$y is: $y"

Result:

A simple substitution: abc

Remember that set returns the new value of the variable: X: def Y: def

Note the curly braces: [set x "This is a string within quotes within braces"]

See how the set is executed: This is a string within braces within quotes

$x is: This is a string within braces within quotes

Note the \ escapes the bracket:

$b is: [set y {This is a string within braces within quotes}]

$y is: def

1.8 Results of a command - Math 101

The Tcl command for doing mathematical calculations is expr. The following
discussion of the expr command is extracted and adapted from the expr man

1.8. RESULTS OF A COMMAND - MATH 101 11

page. Many commands use expr behind the scenes in order to evaluate test
expressions, such as if, while and for loops, discussed in later sections. All of
the advice given here for expr also holds for these other commands.

expr takes all of its arguments (”2 + 2” for example) and evaluates the
result as a Tcl ”expression” (rather than a normal command), and returns the
value. The operators permitted in Tcl expressions include all the standard math
functions, logical operators, bitwise operators, as well as math functions like
rand(), sqrt(), cosh() and so on. Expressions almost always yield numeric
results (integer or floating-point values).

Performance tip: enclosing the arguments to expr in curly braces will
result in faster code. So do expr {\$i * 10} instead of simply expr \$i * 10.
It is also safer, as illustrated at the end of this lesson.

Operands

A Tcl expression consists of a combination of operands, operators, and paren-
theses. White space may be used between operands, operators and parentheses;
it is ignored by the expression processor. Where possible, operands are inter-
preted as integer values. Integer values may be specified in decimal (the normal
case), in octal (if the first character of the operand is 0), or in hexadecimal (if
the first two characters of the operand are 0x).

Note that the octal and hexadecimal conversion takes place differently in the
expr command than in the Tcl substitution phase. In the substitution phase,
a \\x32 would be converted to an ascii ”2”, while expr would convert 0x32 to
a decimal 50.

If an operand does not have one of the integer formats given above, then it is
treated as a floating-point number, if that is possible. Floating-point numbers
may be specified in any of the ways accepted by an ANSI-compliant C compiler.
For example, all of the following are valid floating-point numbers:

2.1

3.

6E4

7.91e+16

.000001

If no numeric interpretation is possible, then an operand is left as a string
(and only a limited set of operators may be applied to it) but literal strings
must be enclosed in double quotes.

Consider the following example: the variable number has a value 2,1, which
is not interpreted as a valid numerical value. So instead it is regarding as a
string. Then any operation is done with strings in mind.

% set number 2,1

% expr {$number > 2} ;# True, because the string "2,1" alphabetically comes after "2"

1

% expr {$number > 2.0} ;# False, because the string "2,1" alphabetically comes before "2.0"

0

It is possible to deal with numbers in that form, but you will have to convert
these ”strings” to numbers in the standard form first.

Operands may be specified in any of the following ways:

12 CHAPTER 1. GETTING STARTED

• As a numeric value, either integer or floating-point.

• As strings enclosed in double quotes.

• As a boolean (logical) value, 1, 0, true, false

• As a Tcl variable, using standard $ notation. The variable’s value will be
used as the operand.

Operators

Some operators work on numbers in general, some work on integer numbers
only and some work on strings only. Each category is listed below

Operations on numbers

The operators that work on numbers of any kind are listed below, grouped in
decreasing order of precedence:

- +

Unary minus, unary plus

**

Exponentiation (works on both floating-point numbers and integers)

* /

Multiply, divide. For integers, see below

+ -

Add and subtract.

== != < > <= >= <

Relational operators: is equal, not equal, less, greater, less than or equal, and
greater than or equal. Each operator produces 1 if the condition is true, 0
otherwise. These operators may be applied to numeric operands as well as
strings, in which case string comparison is used.

% set x 1

% expr { $x>0? ($x+1) : ($x-1) }

2

Operations on integer numbers

~ !

Bit-wise NOT, logical NOT. Same precedence as unary minus and unary plus.

\%

Remainder. Same precedence as multiply and divide.

<< >>

Left and right (bit) shift. Precedence lower than add and subtract.

1.8. RESULTS OF A COMMAND - MATH 101 13

&

Bit-wise AND. Each pair of bits is subjected to the logical operation. \^

Bit-wise exclusive OR. |

Bit-wise OR.
Note: When applied to integers, the division and remainder operators can be

considered to partition the number line into a sequence of equal-sized adjacent
non-overlapping pieces where each piece is the size of the divisor; the division
result identifies which piece the divisor lay within, and the remainder result
identifies where within that piece the divisor lay. A consequence of this is that
the result of -57 / 10 is always -6, and the result of -57 \% 10 is always 3.

Operations on strings

== != < > <= >= <

Relational operators: is equal, not equal, less, greater, less than or equal, and
greater than or equal. Each operator produces 1 if the condition is true, 0 oth-
erwise. With either one or two strings as operands these operations use string
comparison (alphabetical-lexicorgraphical comparison, using the ASCII/UNI-
CODE table).

eq ne in ni

Compare two strings for equality (eq) or inequality (ne) and two operators for
checking if a string is contained in a list (in) or not (ni). These operators all
return 1 (true) or 0 (false). Using these operators ensures that the operands are
regarded exclusively as strings (and lists), not as possible numbers.

Note the difference between == and eq (analoguously != and ne):

% expr { "9" == "9.0"} ;# Operands can be interpreted as numbers

1

% expr { "9" eq "9.0"} ;# No attempt is made to convert the operands to numbers!

0

Logical operations

Expressions can be combined to form more complicated expressions:

&\&

Logical AND. Produces a 1 result if both operands are non-zero, 0 otherwise.
Valid for numeric operands only (integers or floating-point).

||

Logical OR. Produces a 0 result if both operands are zero, 1 otherwise. Valid
for numeric operands only (integers or floating-point).

x?y:z

If-then-else. If x evaluates to non-zero, then the result is the value of y. Other-
wise the result is the value of z. The x operand must have a numeric value:

14 CHAPTER 1. GETTING STARTED

You can influence the order of evaluation using parentheses: expr {3+4*5}

gives 23 and expr {(3+4)*5} gives 35.
For example:

% set x 1

1

% expr { $x % 2 ? "Odd" : "Even" }

Odd

% set y 3

% expr {$x > 1 || ($x < 2 && $y == 3)}

1

Math functions

Tcl supports the following mathematical functions in expressions:

abs acos asin atan

atan2 bool ceil cos

cosh double entier exp

floor fmod hypot int

isqrt log log10 max

min pow rand round

sin sinh sqrt srand

tan tanh wide

Besides these functions, you can also apply commands within an expression.
For instance:

% set x 1

1

% set w "Abcdef"

Abcdef

% expr { [string length $w]-2*$x }

4

It is even possible to define your own math functions, though this is a some-
what advanced subject and requires some understanding of namespaces.

The above mathematical functions and operators also exist as independent
commands:

% expr {sqrt(4)}

2.0

% ::tcl::mathfunc::sqrt 4 ;# sqrt lives in a separate "namespace", "::tcl::mathfunc"

2.0

Type conversions

Tcl supports the following functions to convert from one representation of a
number to another:

double int wide entier

1.8. RESULTS OF A COMMAND - MATH 101 15

• double() converts a number to a double-precision floating-point number.

• int() converts a number to an ordinary integer number (by truncating
the decimal part).

• wide() converts a number to a so-called wide integer number (these num-
bers have a larger range).

• entier() coerces a number to an integer of appropriate size to hold it
without truncation. This might return the sameas int() or wide() or an
integer of arbitrary size (in Tcl 8.5 and above).

The next lesson (Section 1.9) explains the various types of numbers in more
detail.

Examples

Some mathematical expressions:

set X 100

set Y 256

set Z [expr {$Y + $X}]

set Z_LABEL "$Y plus $X is "

puts "$Z_LABEL $Z"

puts "The square root of $Y is [expr { sqrt($Y) }]\n"

puts "Because of the precedence rules \"5 + -3 * 4\" is: [expr {-3 * 4 + 5}]"

puts "Because of the parentheses \"(5 + -3) * 4\" is: [expr {(5 + -3) * 4}]"

Result:

256 plus 100 is 356

The square root of 256 is 16.0

Because of the precedence rules "5 + -3 * 4" is: -7

Because of the parentheses "(5 + -3) * 4" is: 8

set A 3

set B 4

puts "The hypotenuse of a triangle: [expr {hypot($A,$B)}]"

#

The trigonometric functions work with radians ...

#

set pi6 [expr {3.1415926/6.0}]

puts "The sine and cosine of pi/6: [expr {sin($pi6)}] [expr {cos($pi6)}]"

Result:

The hypotenuse of a triangle: 5.0

The sine and cosine of pi/6: 0.49999999226497965 0.8660254082502546

16 CHAPTER 1. GETTING STARTED

#

Working with arrays

#

set a(1) 10

set a(2) 7

set a(3) 17

set b 2

puts "Sum: [expr {$a(1)+$a($b)}]"

Result: Sum: 17

Bracing your expressions

Consider the following commands:

% set userinput {[puts DANGER!]}

[puts DANGER!]

% expr $userinput == 1

DANGER!

0

% expr {$userinput == 1}

0

In the first example, the code contained in the user-supplied input is eval-
uated, whereas in the second the braces prevent this potential danger. As a
general rule, always surround expressions with braces, whether using expr di-
rectly or some other command that takes an expression (such as if or while).

Numbers with a leading zero

Beware of leading zeros: 0700 is not interpreted as the decimal number 700
(seven hundred), but as the octal number 700 = 7*8*8 = 448 (decimal).

Worse, if the number contains a digit 8 or 9 an error results:

% expr {0900+1}

expected integer but got "0900" (looks like invalid octal number)

Octal numbers are in fact a relic of the past, when such number formats were
much more common.

If you need to read in decimal data that might have leading zeros, then use
the scan command to properly convert them into numbers without the above
problems.

1.9 Computers and numbers

If you are new to programming, then this lesson may contain some surprising
information. But even if you are used to writing programs, computers can do
unexpected things with numbers. The purpose of this lesson is to shed some
light on some of the mysteries and quirks you can encounter. These mysteries
exist independently of the programming language, though one programming

1.9. COMPUTERS AND NUMBERS 17

language may be better at isolating you from them than another. The problem
is that computers do not deal with the numbers we are used and in the way we
are used to.

% expr {1/6}

0

% expr {1/6.0}

0.16666666666666666

The difference is the decimal point in the second expression.

Tcl’s strategy

Tcl uses a simple but efficient strategy to decide what kind of numbers to use
for the computations:

• If you add, subtract, multiply and divide two integer numbers, then the
result is an integer. If the result fits within the range you have the exact
answer. If not, you end up with something that appears to be completely
wrong. (Note: not too long ago, floating-point computations were much
more time-consuming than integer computations. And most computers
do not warn about integer results outside the range, because that is too
time-consuming too: a computer typically uses lots of such operations,
most of which do fit into the designated range.)

• If you add, subtract, multiply and divide an integer number and a floating-
point number, then the integer number is first converted to a floating-point
number with the same value and then the computation is done, resulting
in a floating-point number.

Floating-point computations are quite complex, and the current(IEEE) stan-
dard prescribes what should happen in minute detail. One such detail is that
results outside the proper ranges are reported. Tcl catches these and displays
a warning:

% # Compute 1.0e+300/1.0-300

% puts [expr {1.0e300/1.0e-300}]

floating-point value too large to represent

What are those mysteries and quirks?

Now some of the mysteries you can find yourself involved in. Run the following
scripts:

#

Division

#

puts "1/2 is [expr {1/2}]"

puts "-1/2 is [expr {-1/2}]"

puts "1/2 is [expr {1./2}]"

puts "1/3 is [expr {1./3}]"

puts "1/3 is [expr {double(1)/3}]"

18 CHAPTER 1. GETTING STARTED

The first two computations have the surprising result: 0 and -1. That is
because the result is an integer number and the mathematically exact results
1/2 and -1/2 are not. If you interested in the details of how Tcl works, the
outcome q is determined as follows:

a = q * b + r

0 <= |r| < |b|

r has the same sign as q

Here are some examples with floating-point numbers:

puts "1/2 is [expr {1./2}]"

puts "1/3 is [expr {1./3}]"

set a [expr {1.0/3.0}]

puts "3*(1/3) is [expr {3.0*$a}]"

set b [expr {10.0/3.0}]

puts "3*(10/3) is [expr {3.0*$b}]"

set c [expr {10.0/3.0}]

set d [expr {2.0/3.0}]

puts "(10.0/3.0) / (2.0/3.0) is [expr {$c/$d}]"

set e [expr {1.0/10.0}]

puts "1.2 / 0.1 is [expr {1.2/$e}]"

While many of the above computations give the result you would expect,
note however the last decimals, the last two do not give exactly 5 and 12!
This is because computers can only deal with numbers with a limited precision:
floating-point numbers are not our mathematical real numbers.

Somewhat unexpectedly, 1/10 also gives problems. 1.2/0.1 results in 11.999999999999998,
not 12. That is an example of a very nasty aspect of most computers and pro-
gramming languages today: they do not work with ordinary decimal fractions,
but with binary fractions. So, 0.5 can be represented exactly, but 0.1 can not.

Some practical consequences

• The fact that floating-point numbers are not ordinary decimal or real
numbers and the actual way computers deal with floating-point numbers,
has a number of consequences: Results obtained on one computer may not
exactly match the results on another computer. Usually the differences
are small, but if you have a lot of computations, they can add up!

• Whenever you convert from floating-point numbers to integer numbers,
for instance when determining the labels for a graph (the range is 0 to 1.2
and you want a step size of 0.1), you need to be careful:

#

The wrong way

#

set number [expr {int(1.2/0.1)}] ;# Force an integer -

1.9. COMPUTERS AND NUMBERS 19

;# accidentally number = 11

for { set i 0 } { $i <= $number } { incr i } {

set x [expr {$i*0.1}]

... create label $x

}

#

A right way - note the limit

#

set x 0.0

set delta 0.1

while { $x < 1.2+0.5*$delta } {

... create label $x

set x [expr {$x + $delta}]

}

• If you want to do financial computations, take care: there are specific
standards for doing such computations that unfortunately depend on the
country where they are used - the US standard is slightly different from
the European standard.

• Transcendental functions, like sin() and exp() are not standardised at all.
The outcome could differ in one or more decimals from one computer to
the next. So, if you want to be absolutely certain that the mathematical
number ”pi” is a specific value, use that value and do not rely on formulae
like these:

#

Two different estimates of "pi"

#

set pi1 [expr {4.0*atan(1.0)}]

set pi2 [expr {6.0*asin(0.5)}]

puts [expr {$pi1-$pi2}]

-4.4408920985006262e-016

20 CHAPTER 1. GETTING STARTED

Chapter 2

Flow control

2.1 Numeric Comparisons 101 - if

Like most languages, Tcl supports an if command. The syntax is:

if {expr1} ?then? {

body1

} elseif {expr2} ?then? {

body2

} elseif {

...

} ?else {

bodyN

}?

The words then and else are optional, although usually then is left out and
else is used.

The test expression following if should return a value that can be inter-
preted as representing ”true” or ”false”: If the test expression returns a string

False True
a numeric value 0 all others
yes/no no yes
true/false false true

”yes”/”no” or ”true”/”false”, the case of the return is not checked. True/FALSE
or YeS/nO are legitimate returns.

If the test expression evaluates to True, then body1 will be executed.
If the test expression evaluates to False, then the word after body1 will be

examined. If the next word is elseif, then the next test expression will be
tested as a condition. If the next word is else then the final body will be
evaluated as a command.

The test expression following the word if is evaluated in the same manner
as in the expr command.

The test expression following if should be enclosed within braces. This
causes the expression to be evaluated within the if command.

21

22 CHAPTER 2. FLOW CONTROL

Note: as was explained in the lesson on the expr command (Section 1.8),
you should always use braces around expressions.

Example

set x 1

if {$x == 2} {puts "$x is 2"} else {puts "$x is not 2"}

if {$x != 1} {

puts "$x is != 1"

} else {

puts "$x is 1"

}

Result:

1 is not 2

1 is 1

2.2 Textual Comparison - switch

The switch command allows you to choose one of several options in your code.
It is similar to switch in C, except that it is more flexible, because you can
switch on strings, instead of just integers. The string will be compared to a set
of patterns, and when a pattern matches the string, the code associated with
that pattern will be evaluated.

It’s a good idea to use the switch command when you want to match a
variable against several possible values, and don’t want to do a long series of
if... elseif ... elseif statements.

The syntax of the command is:

switch ?options? string {

pattern1 {

body1

}

?pattern2 {

body2

}?

...

?patternN {

bodyN

}?

}

string is the string that you wish to test, and pattern1, pattern2, etc

are the patterns that the string will be compared to. If string matches a
pattern, then the code within the body associated with that pattern will be
executed. The return value of the body will be returned as the return value of
the switch statement. Only one pattern will be matched.

2.3. LOOPING 101 - WHILE LOOP 23

If the last pattern argument is the string default, that pattern will match
any string. This guarantees that some set of code will be executed no matter
what the contents of string are.

If there is no default argument, and none of the patterns match string,
then the switch command will return an empty string.

The options can be used to change the interpretation of the patterns. By
default ”glob” style pattern matching is used, where an asterisk (*) matches any
number of characters, that is a pattern ”lesson*” matches ”lesson”, ”lessons”,
”lession 2” etc.

Example

set x "ONE"

set y 1

set z ONE

Note that patterns are not subject to substitutions within braces

switch $x {

"$z" {

set y1 [expr {$y+1}]

puts "MATCH \$z. $y + $z is $y1"

}

ONE {

set y1 [expr {$y+1}]

puts "MATCH ONE. $y + one is $y1"

}

TWO {

set y1 [expr {$y+2}]

puts "MATCH TWO. $y + two is $y1"

}

THREE {

set y1 [expr {$y+3}]

puts "MATCH THREE. $y + three is $y1"

}

default {

puts "$x is NOT A MATCH"

}

}

Result:

MATCH ONE. 1 + one is 2

2.3 Looping 101 - While loop

Tcl includes three commands for looping, the while, for and foreach com-
mands. Like the if statement, they evaluate their test the same way that the
expr does. In this lesson we discuss the while command, and in the next lesson,

24 CHAPTER 2. FLOW CONTROL

the for command. The last command will be treated together with lists, as it
iterates over one or more lists.

In many circumstances where one of the commands while or for can be
used, the other can be used as well.

while test {

body

}

The while command evaluates test as an expression. If test is true, the
code in body is executed. After the code in body has been executed, test is
evaluated again.

A continue statement within body will cause the rest to be skipped and
execution continues with the next iteration. A break within body will break
out of the while loop, and execution will continue after the closing brace.

In Tcl everything is a command, and everything goes through the same
substitution phase. For this reason, the test must be placed within braces. If
test is placed within quotes, the substitution phase will replace any variables
with their current value, and will pass that test to the while command to
evaluate, and since the test has only numbers, it will always evaluate the same,
quite probably leading to an endless loop!

Examples

set x 1

This is a normal way to write a Tcl while loop.

while {$x < 5} {

puts "x is $x"

set x [expr {$x + 1}]

}

puts "exited first loop with X equal to $x\n"

Result:

x is 1

x is 2

x is 3

x is 4

exited first loop with X equal to 5

Look at the next loop. If it weren’t for the break command in the second
loop, it would loop forever.

The next example shows the difference between ".." and {...}

How many times does the following loop run? Why does it not

print on each pass?

set x 0

2.4. LOOPING 102 - FOR AND INCR 25

while "$x < 5" {

set x [expr {$x + 1}]

if {$x > 7} break

if "$x > 3" continue

puts "x is $x"

}

puts "exited second loop with X equal to $x"

Result:

x is 1

x is 2

x is 3

exited second loop with X equal to 8

2.4 Looping 102 - For and incr

Tcl supports a loop construct similar to the for loop in C. The for command
in Tcl takes four arguments; an initialization, a test, an increment, and the
body of code to evaluate on each pass through the loop. The syntax for the for

command is:

for start test next body

During evaluation of the for command, the start code is evaluated once,
before any other arguments are evaluated. After the start code has been eval-
uated, the test is evaluated. If the test evaluates to true, then the body is
evaluated, and finally, the next argument is evaluated. After evaluating the
next argument, the interpreter loops back to the test, and repeats the process.
If the test evaluates as false, then the loop will exit immediately.

start is the initialization portion of the command. It is usually used to
initialize the iteration variable, but can contain any code that you wish to
execute before the loop starts.

The test argument is evaluated as an expression, just as with the expr

while and if commands.
next is commonly an incrementing command, but may contain any command

which the Tcl interpreter can evaluate.
body is the body of code to execute.
When braces are used for grouping, the newline is not treated as the end

of a Tcl command. This makes it simpler to write multiple line commands.
However, the opening brace must be on the line with the for command, or the
Tcl interpreter will treat the close of the next brace as the end of the command,
and you will get an error. This is different than other languages like C or Perl,
where it doesn’t matter where you place your braces.

Within the body code, the commands break and continue may be used
just as they are used with the while command. When a break is encountered,
the loop exits immediately. When a continue is encountered, evaluation of the
body ceases, and the next iteration is started (if there is one left).

26 CHAPTER 2. FLOW CONTROL

Because incrementing the iteration variable is so common, Tcl has a special
command for this:

incr varName ?increment?

This command adds the value in the second argument to the variable named
in the first argument. If no value is given for the second argument, it defaults
to 1.

Example

for {set i 0} {$i < 10} {incr i} {

puts "I inside first loop: $i"

}

for {set i 3} {$i < 2} {incr i} {

puts "I inside second loop: $i"

}

puts "Start"

set i 0

while {$i < 10} {

puts "I inside third loop: $i"

incr i

puts "I after incr: $i"

}

set i 0

incr i

This is equivalent to:

set i [expr {$i + 1}]

Result:

I inside first loop: 0

I inside first loop: 1

I inside first loop: 2

I inside first loop: 3

I inside first loop: 4

I inside first loop: 5

I inside first loop: 6

I inside first loop: 7

I inside first loop: 8

I inside first loop: 9

Start

I inside third loop: 0

I after incr: 1

I inside third loop: 1

I after incr: 2

I inside third loop: 2

I after incr: 3

2.5. ADDING NEW COMMANDS TO TCL - PROC 27

I inside third loop: 3

I after incr: 4

I inside third loop: 4

I after incr: 5

I inside third loop: 5

I after incr: 6

I inside third loop: 6

I after incr: 7

I inside third loop: 7

I after incr: 8

I inside third loop: 8

I after incr: 9

I inside third loop: 9

I after incr: 10

2.5 Adding new commands to Tcl - proc

In Tcl there is actually no distinction between commands (often known as ’func-
tions’ in other languages) and ”syntax”. There are no reserved words (like if
and while) as exist in C, Java, Python, Perl, etc... When the Tcl interpreter
starts up there is a list of known commands that the interpreter uses to parse a
line. These commands include while, for, set, puts, and so on. They are,
however, still just regular Tcl commands that obey the same syntax rules as all
Tcl commands, both built-in, and those that you create yourself with the proc

command.
The proc command creates a new command. The syntax for the proc

command is:

proc name arguments body

When proc is evaluated, it creates a new command with name name that
takes arguments args. When the procedure name is called, it then runs the code
contained in body.

arguments is a list of arguments which will be passed to name. When name

is invoked, local variables with these names will be created, and the values to
be passed to name will be copied to the local variables.

The value that the body of a proc returns can be defined with the return

command. The return command will return its argument to the calling pro-
gram. If there is no return, then body will return to the caller when the last
of its commands has been executed. The return value of the last command
becomes the return value of the procedure.

Example

proc sum {arg1 arg2} {

set x [expr {$arg1 + $arg2}];

return $x

}

28 CHAPTER 2. FLOW CONTROL

puts " The sum of 2 + 3 is: [sum 2 3]\n\n"

Result:

The sum of 2 + 3 is: 5

If you make a mistake in the call, Tcl will write an error message:

puts " The sum of 2 + 3 is: [sum 2]\n\n"

gives:

wrong # args: should be "sum arg1 arg2"

while executing

"sum 2"

invoked from within

"puts " The sum of 2 + 3 is: [sum 2]\n\n""

(file "xx.tcl" line 6)

Result: As an aside, it is possible to redefine any builtin command or procedure.
This is useful for instance for debugging purposes, although there are other
means for this as well. As a simple demonstration:

proc for {a b c} {

puts "The for command has been replaced by a puts";

puts "The arguments were: $a\n$b\n$c\n"

}

for {set i 1} {$i < 10} {incr i}

2.6 Variations in proc arguments and return val-
ues

A proc can be defined with a set number of required arguments (as was done
with sum in the previous lesson, or it can have a variable number of arguments.
An argument can also be defined to have a default value.

Variables can be defined with a default value by placing the variable name
and the default within braces within args. For example:

proc justdoit {a {b 1} {c -1}} {

...

}

Since there are default arguments for the b and c variables, you could call
the procedure one of three ways: justdoit 10, which would set a to 10, and
leave b set to its default 1, and c at -1. justdoit 10 20 would likewise set b to
20, and leave c to its default. Or call it with all three parameters set to avoid
any defaults.

A proc will accept a variable number of arguments if the last declared ar-
gument is the word args. If the last argument to a proc argument list is args,
then any arguments that aren’t already assigned to previous variables will be
assigned to args.

2.6. VARIATIONS IN PROC ARGUMENTS AND RETURN VALUES 29

proc show_a_list {args} {

set n 0

foreach arg $args {

puts "Argument $n: $arg"

incr n

}

}

show_a_list A B C D

puts ""

show_a_list E F

results in:

Argument 0: A

Argument 1: B

Argument 2: C

Argument 3: D

Argument 0: E

Argument 1: F

Note that if there is a variable other than args after a variable with a default,
then the default will never be used. For example, if you declare a proc such as:

proc function { a {b 1} c} {...}

you will always have to call it with 3 arguments.
Tcl assigns values to a proc’s variables in the order that they are listed in

the command. If you provide 2 arguments when you call function they will be
assigned to a and b, and Tcl will generate an error because c is undefined.

You can, however, declare other arguments that may not have values as
coming after an argument with a default value. For example, this is valid:

proc example {required {default1 a} {default2 b} args} {...}

In this case, example requires one argument, which will be assigned to the
variable required. If there are two arguments, the second arg will be assigned
to default1. If there are 3 arguments, the first will be assigned to required,
the second to default1, and the third to default2. If example is called with
more than 3 arguments, all the arguments after the third will be assigned to
args.

Example

The example procedure below is defined with three arguments. At least one
argument must be present when example is called. The second argument can
be left out, and in that case it will default to an empty string. By declaring
args as the last argument, example can take a variable number of arguments.

Also note the use of the return statement to explicitly return a particular
result.

30 CHAPTER 2. FLOW CONTROL

proc example {first {second ""} args} {

if {$second eq ""} {

puts "There is only one argument and it is: $first"

return 1

} else {

if {$args eq ""} {

puts "There are two arguments - $first and $second"

return 2

} else {

puts "There are many arguments - $first and $second and $args"

return "many"

}

}

}

set count1 [example ONE]

set count2 [example ONE TWO]

set count3 [example ONE TWO THREE]

set count4 [example ONE TWO THREE FOUR]

puts "The example was called with $count1, $count2, $count3, and $count4 Arguments"

Result:

There is only one argument and it is: ONE

There are two arguments - ONE and TWO

There are many arguments - ONE and TWO and THREE

There are many arguments - ONE and TWO and THREE FOUR

The example was called with 1, 2, many, and many Arguments

2.7 Variable scope - global and upvar

Tcl evaluates variables within a scope delineated by procs, namespaces (see
Building reusable libraries - packages and namespaces (Section 6.2)), and at the
topmost level, the global scope.

The scope in which a variable will be evaluated can be changed with the
global and upvar commands.

The global command will cause a variable in a local scope (inside a proce-
dure) to refer to the global variable of that name.

The upvar command is similar. It ”ties” the name of a variable in the
current scope to a variable in a different scope. This is commonly used to
simulate pass-by-reference to procs.

You might also encounter the variable command in others’ Tcl code. It
is part of the namespace system and is discussed in detail in the chapter on
namespaces (Section 6.2).

Normally, Tcl uses a type of ”garbage collection” called reference counting
in order to automatically clean up variables when they are not used anymore,
such as when they go ”out of scope” at the end of a procedure, so that you

2.7. VARIABLE SCOPE - GLOBAL AND UPVAR 31

don’t have to keep track of them yourself. It is also possible to explicitly unset
them with the aptly named unset command.

The syntax for upvar is:

upvar ?level? otherVar1 myVar1 ?otherVar2 myVar2? ... ?otherVarN myVarN?

The upvar command causes myVar1 to become a reference to otherVar1,
and myVar2 to become a reference to otherVar2, etc. The otherVar variable is
declared to be at level relative to the current procedure. By default level is
1, the next level up, though it is best to always set it explicitly.

If a number is used for the level, then level references that many levels up
the stack from the current level.

If the level number is preceded by a \# symbol, then it references that
many levels down from the global scope. If level is \#0, then the reference is
to a variable at the global level.

If you are using upvar with anything except #0 or 1, you are most likely
asking for trouble, unless you really know what you’re doing.

You should avoid using global variables if possible. If you have a lot of
globals, you should reconsider the design of your program.

Note that since there is only one global space it is surprisingly easy to have
name conflicts if you are importing other people’s code and aren’t careful. It is
recommended that you start global variables with an identifiable prefix to help
avoid unexpected conflicts.

Example

The global command can be used for data you need to share:

global logFile

set logFile [open "log.out" w]

proc writeLog {data} {

global logFile

puts $logFile "LOG: $data"

}

This is a simplistic way to provide logging information.
The upvar command can be used to pass variables ”by reference”:

proc SetPositive {variable value } {

upvar 1 $variable myvar

if {$value < 0} {

set myvar [expr {-$value}]

} else {

set myvar $value

}

return $myvar

Or more concisely:

set myvar [expr {abs($myvar)}]

}

32 CHAPTER 2. FLOW CONTROL

SetPositive x 5

SetPositive y -5

puts "X : $x Y: $y\n"

resulting in:

X : 5 Y: 5

Chapter 3

Data types

3.1 Tcl Data Structures 101 - The list

The list is the basic Tcl data structure. A list is simply an ordered collection
of stuff; numbers, words, strings, or other lists. Even commands in Tcl are just
lists in which the first list entry is the name of a proc, and subsequent members
of the list are the arguments to the proc.

Lists can be created in several ways:

• by setting a variable to be a list of values

set lst {{item 1} {item 2} {item 3}}

• with the split command:

set lst [split "item 1.item 2.item 3" "."]

• with the list command.

set lst [list "item 1" "item 2" "item 3"]

An individual list member can be accessed with the lindex command.
The brief description of these commands is:

list ?arg1? ?arg2? ... ?argN?

makes a list of the arguments

split string ?splitChars?

splits the string into a list of items wherever the splitChars occur in the code.
SplitChars defaults to being whitespace. Note that if there are two or more
splitChars then each one will be used individually to split the string. In other
words: split "1234567" "36" would return the following list: 12 45 7.

lindex list index

Returns the index’th item from the list. Note: lists start from 0, not 1, so the
first item is at index 0, the second item is at index 1, and so on.

33

34 CHAPTER 3. DATA TYPES

llength list

Returns the number of elements in a list.
The items in list can be iterated through using the foreach command:

foreach varName list body

The foreach command will execute the body code one time for each list item
in list. On each pass, varName will contain the value of the next list item.

In reality, the above form of foreach is the simple form, but the command
is quite powerful. It will allow you to take more than one variable at a time
from the list: foreach {a b} \$listofpairs { ... }. You can even take a
variable at a time from multiple lists! For example:

foreach a $listOfA b $listOfB {

...

}

or:

foreach {a b} $listOfAB {

...

}

Furthermore, lists can be nested:

set nestedList {

{1 2 3}

{A B C D}

{xyz 33 1A}

}

puts "The last element from the second sublist is: [lindex $nestedList 1 end]"

producing:

The last element from the second sublist is: D

Examples

set x "a b c d e f g h"

puts "Item at index 2 of the list {$x} is: [lindex $x 2]\n"

set y [split 7/4/1776 "/"]

puts "We celebrate on the [lindex $y 1]’th day of the [lindex $y 0]’th month\n"

set z [list puts "arg 2 is $y"]

puts "A command resembles: $z\n"

set i 0

foreach j $x {

puts "$j is item number $i in list x"

incr i

3.2. ADDING AND DELETING MEMBERS OF A LIST 35

}

set i 0

foreach {a b} $x {

puts "Pair $i in list x: $a, $b"

incr i

}

Result:

Item at index 2 of the list {a b c d e f g h} is: c

We celebrate on the 4’th day of the 7’th month

A command resembles: puts {arg 2 is 7 4 1776}

a is item number 0 in list x

b is item number 1 in list x

c is item number 2 in list x

d is item number 3 in list x

e is item number 4 in list x

f is item number 5 in list x

g is item number 6 in list x

h is item number 7 in list x

Pair 0 in list x: a, b

Pair 1 in list x: c, d

Pair 2 in list x: e, f

Pair 3 in list x: g, h

3.2 Adding and Deleting members of a list

The commands for adding and deleting list members are:

concat ?arg1 arg2 ... argn?

Concatenates the args into a single list. It also eliminates leading and trailing
spaces in the args and adds a single separator space between args. The args to
concat may be either individual elements, or lists. If an arg is already a list,
the contents of that list is concatenated with the other args.

lappend varName ?arg1 arg2 ... argn?

Appends the args to the list in variable varName treating each arg as a list
element.

linsert listValue index arg1 ?arg2 ... argn?

Returns a new list with the new list elements inserted just before the indexth
element of listValue. Each element argument will become a separate element
of the new list. If index is less than or equal to zero, then the new elements are
inserted at the beginning of the list. If index has the value end , or if it is greater
than or equal to the number of elements in the list, then the new elements are
appended to the list.

36 CHAPTER 3. DATA TYPES

lreplace \verblistValue first last ?arg1 ... argn¿
Returns a new list with N elements of listName replaced by the args. If first
is less than or equal to 0, lreplace starts replacing from the first element of the
list. If first is greater than the end of the list, or the word end, then lreplace
behaves like lappend. If there are fewer args than the number of positions
between first and last, then the positions for which there are no args are
deleted.

lset varName index newValue

The lset command can be used to set elements of a list directly, instead of
using lreplace. With nested lists, the index can consist of several indices, one
for each level: lset varName 1 2 3 "Hello, world"

Lists in Tcl are the right data structure to use when you have an arbitrary
number of things, and you’d like to access them according to their order in the
list. In C, you would use an array. In Tcl, arrays are associative arrays - hash
tables, as you’ll see in the coming sections. If you want to have a collection
of things, and refer to the Nth thing (give me the 10th element in this group
of numbers), or go through them in order via foreach. An alternative is the
dictionary or dict‘ (Section 3.14).

Take a look at the example code, and pay special attention to the way that
sets of characters are grouped into single list elements.

Example

set b [list a b {c d e} {f {g h}}]

puts "Treated as a list: $b\n"

set b [split "a b {c d e} {f {g h}}"]

puts "Transformed by split: $b\n"

set a [concat a b {c d e} {f {g h}}]

puts "Concated: $a\n"

lappend a {ij K lm} ;# Note: {ij K lm} is a single element

puts "After lappending: $a\n"

set b [linsert $a 3 "1 2 3"] ;# "1 2 3" is a single element

puts "After linsert at position 3: $b\n"

set b [lreplace $b 3 5 "AA" "BB"]

puts "After lreplacing 3 positions with 2 values at position 3: $b\n"

Result:

Treated as a list: a b {c d e} {f {g h}}

Transformed by split: a b \{c d e\} \{f \{g h\}\}

Concated: a b c d e f {g h}

3.3. MORE LIST COMMANDS - LSEARCH, LSORT, LRANGE 37

After lappending: a b c d e f {g h} {ij K lm}

After linsert at position 3: a b c {1 2 3} d e f {g h} {ij K lm}

After lreplacing 3 positions with 2 values at position 3: a b c AA BB f {g h} {ij K lm}

3.3 More list commands - lsearch, lsort, lrange

Lists can be searched with the lsearch command, sorted with the lsort com-
mand, and a range of list entries can be extracted with the lrange command.

lsearch ?options? list pattern

Searches list for an entry that matches pattern, and returns the index for
the first match, or a -1 if there is no match. By default, lsearch uses ”glob”
patterns for matching. See the section on ¡a href=”Tcl16a.html”¿globbing¡/a¿.

lsort ?options? list

Sorts list and returns a new list in the sorted order. By default, it sorts the
list into alphabetic order. Note that this command returns the sorted list as a
result, instead of sorting the list in place. If you have a list in a variable, the
way to sort it is like so: set lst [lsort \$lst]

lrange list first last

Returns a list composed of the first through last entries in the list. If first
is less than or equal to 0, it is treated as the first list element. If last is end or
a value greater than the number of elements in the list, it is treated as the end.
If first is greater than last then an empty list is returned.

While the options are not discussed here, they make these commands very
powerful.

Example

set list [list {Washington 1789} {Adams 1797} {Jefferson 1801} \

{Madison 1809} {Monroe 1817} {Adams 1825}]

set x [lsearch $list Washington*]

set y [lsearch $list Madison*]

incr x

incr y -1 ;# Set range to be not-inclusive

set subsetlist [lrange $list $x $y]

puts "The following presidents served between Washington and Madison"

foreach item $subsetlist {

puts "Starting in [lindex $item 1]: President [lindex $item 0] "

}

set x [lsearch $list Madison*]

38 CHAPTER 3. DATA TYPES

set srtlist [lsort $list]

set y [lsearch $srtlist Madison*]

puts "\n$x Presidents came before Madison chronologically"

puts "$y Presidents came before Madison alphabetically"

Result:

The following presidents served between Washington and Madison

Starting in 1797: President Adams

Starting in 1801: President Jefferson

3 Presidents came before Madison chronologically

3 Presidents came before Madison alphabetically

3.4 Simple pattern matching - ”globbing”

By default, lsearch uses the ”globbing” method of finding a match. Globbing is
the wildcarding technique that most Unix shells use.

globbing wildcards are:

*
Matches any quantity of any character

?
Matches one occurrence of any character

X
The backslash escapes a special character in globbing just the way it does in
Tcl substitutions. Using the backslash lets you use glob to match a * or ?.

[...]
Matches one occurrence of any character within the brackets. A range of char-
acters can be matched by using a range between the brackets. For example,
[a-z] will match any lower case letter.

There is also a glob command that you will see in later sections that uses
glob pattern matching in directories, and returns a list of the matching files.

Example

Matches

string match f* foo

Matches

string match f?? foo

Doesn’t match

3.5. STRING SUBCOMMANDS - LENGTH INDEX RANGE 39

string match f foo

Returns a big list of files on my Debian system.

set bins [glob /usr/bin/*]

3.5 String Subcommands - length index range

Tcl commands often have ”subcommands”. The string command is an example
of one of these. The string command treats its first argument as a subcom-
mand. Utilizing subcommands is a good way to make one command do multiple
things without using cryptic names. For instance, Tcl has string length in-
stead of, say, slength.

This lesson covers these string subcommands:

string length str

Returns the length of str.

string index str i

Returns the ith character from str.

string range str first last

Returns a string composed of the characters from first to last taken from
str.

Example

set string "this is my test string"

puts "There are [string length $string] characters in \"$string\""

puts "[string index $string 1] is the second character in \"$string\""

puts "\"[string range $string 5 10]\" are characters between the 5’th and 10’th"

Result:

There are 22 characters in "this is my test string"

h is the second character in "this is my test string"

"is my " are characters between the 5’th and 10’th

3.6 String comparisons - compare match first
last wordend

There are 6 string subcommands that do pattern and string matching. These
are relatively fast operations, certainly faster than regular expressions, albeit
less powerful.

40 CHAPTER 3. DATA TYPES

string compare string1 string2

Compares string1 to string2 and returns: ¡ul¿ ¡li¿-1 If string1 is less
than string2 ¡li¿ 0 If string1 is equal to string2 ¡li¿ 1 If string1
is greater than string2 ¡/ul¿ These comparisons are done alphabetically, not
numerically - in other words ”a” is less than ”b”, and ”10” is less than ”2”.

string first string1 string2

Returns the index of the character in string1 that starts the first match to
string2, or -1 if there is no match.

string last string1 string2

Returns the index of the character in string1 that starts the last match to
string2, or -1 if there is no match.

string wordend str i

Returns the index of the character just after the last one in the word which
contains the i’th character of str. A word is any contiguous set of letters,
numbers or underscore characters, or a single other character.

string wordstart str i

Returns the index of the first character in the word that contains the i’th
character of str. A word is any contiguous set of letters, numbers or underscore
characters, or a single other character.

string match pattern str

Returns 1 if the pattern matches string. The pattern is a glob (Section 3.4)
style pattern.

Example

set fullpath "/usr/home/clif/TCL_STUFF/TclTutor/Lsn.17"

set relativepath "CVS/Entries"

set directorypath "/usr/bin/"

set paths [list $fullpath $relativepath $directorypath]

foreach path $paths {

set first [string first "/" $path]

set last [string last "/" $path]

Report whether path is absolute or relative

if {$first != 0} {

puts "$path is a relative path"

} else {

puts "$path is an absolute path"

}

If "/" is not the last character in $path, report the last word.

3.6. STRING COMPARISONS - COMPAREMATCH FIRST LASTWORDEND41

else, remove the last "/", and find the next to last "/", and

report the last word.

incr last

if {$last != [string length $path]} {

set name [string range $path $last end]

puts "The file referenced in $path is $name"

} else {

incr last -2;

set tmp [string range $path 0 $last]

set last [string last "/" $tmp]

incr last;

set name [string range $tmp $last end]

puts "The final directory in $path is $name"

}

CVS is a directory created by the CVS source code control system.

#

if {[string match "*CVS*" $path]} {

puts "$path is part of the source code control tree"

}

Compare to "a" to determine whether the first char is upper or lower case

set comparison [string compare $name "a"]

if {$comparison >= 0} {

puts "$name starts with a lowercase letter\n"

} else {

puts "$name starts with an uppercase letter\n"

}

}

Result:

/usr/home/clif/TCL_STUFF/TclTutor/Lsn.17 is an absolute path

The file referenced in /usr/home/clif/TCL_STUFF/TclTutor/Lsn.17 is Lsn.17

Lsn.17 starts with an uppercase letter

CVS/Entries is a relative path

The file referenced in CVS/Entries is Entries

CVS/Entries is part of the source code control tree

Entries starts with an uppercase letter

/usr/bin/ is an absolute path

The final directory in /usr/bin/ is bin

bin starts with a lowercase letter

42 CHAPTER 3. DATA TYPES

3.7 Modifying Strings - tolower, toupper, trim,
format

These are the commands which modify a string. Note that none of these modify
the string in place. In all cases a new string is returned.

string tolower str

Returns str with all the letters converted from upper to lower case.

string toupper str

Returns string with all the letters converted from lower to upper case.

string trim str ?trimChars?

Returns string with all occurrences of trimChars removed from both ends. By
default trimChars are whitespace (spaces, tabs, newlines). Note that the char-
acters are not treated as a ”block” of characters - in other words, string trim "davidw" dw

would return the string avi and not davi.

string trimleft str ?trimChars?

Returns string with all occurrences of trimChars removed from the left. By
default trimChars are whitespace (spaces, tabs, newlines)

string trimright str ?trimChars?

Returns string with all occurrences of trimChars removed from the right. By
default trimChars are whitespace (spaces, tabs, newlines)

format formatString ?arg1 arg2 ... argN?

Returns a string formatted in the same manner as the ANSI sprintf procedure.
FormatString is a description of the formatting to use. The full definition of
this protocol is in the format man page. A useful subset of the definition is that
formatString consists of literal words, backslash sequences, and % fields. The
% fields are strings which start with a % and end with one of:

• s... Data is a string

• d... Data is a decimal integer

• x... Data is a hexadecimal integer

• o... Data is an octal integer

• f... Data is a floating point number

The % may be followed by:

• -... Left justify the data in this field

• +... Right justify the data in this field

The justification value may be followed by a number giving the minimum
number of spaces to use for the data.

3.8. EXAMPLE 43

3.8 Example

set upper "THIS IS A STRING IN UPPER CASE LETTERS"

set lower "this is a string in lower case letters"

set trailer "This string has trailing dots"

set leader "....This string has leading dots"

set both "((this string is nested in parens)))"

puts "tolower converts this: $upper"

puts " to this: [string tolower $upper]\n"

puts "toupper converts this: $lower"

puts " to this: [string toupper $lower]\n"

puts "trimright converts this: $trailer"

puts " to this: [string trimright $trailer .]\n"

puts "trimleft converts this: $leader"

puts " to this: [string trimleft $leader .]\n"

puts "trim converts this: $both"

puts " to this: [string trim $both "()"]\n"

set labels [format "%-20s %+10s " "Item" "Cost"]

set price1 [format "%-20s %10d Cents Each" "Tomatoes" "30"]

set price2 [format "%-20s %10d Cents Each" "Peppers" "20"]

set price3 [format "%-20s %10d Cents Each" "Onions" "10"]

set price4 [format "%-20s %10.2f per Lb." "Steak" "3.59997"]

puts "\n Example of format:\n"

puts "$labels"

puts "$price1"

puts "$price2"

puts "$price3"

puts "$price4"

Result:

tolower converts this: THIS IS A STRING IN UPPER CASE LETTERS

to this: this is a string in upper case letters

toupper converts this: this is a string in lower case letters

to this: THIS IS A STRING IN LOWER CASE LETTERS

trimright converts this: This string has trailing dots

to this: This string has trailing dots

trimleft converts this:This string has leading dots

to this: This string has leading dots

trim converts this: ((this string is nested in parens)))

to this: this string is nested in parens

44 CHAPTER 3. DATA TYPES

Example of format:

Item Cost

Tomatoes 30 Cents Each

Peppers 20 Cents Each

Onions 10 Cents Each

Steak 3.60 per Lb.

3.9 Regular Expressions 101

Tcl also supports string operations known as ¡I¿regular expressions¡/I¿ Several
commands can access these methods with a -regexp argument, see the detailed
documentation for which commands support regular expressions.

There are also two explicit commands for parsing regular expressions.

regexp ?switches? exp string ?matchVar? ?subMatch1 ... subMatchN?

Searches string for the regular expression exp. If a parameter matchVar is
given, then the substring that matches the regular expression is copied to
matchVar. If subMatchN variables exist, then the parenthetical parts of the
matching string are copied to the subMatch variables, working from left to
right.

regsub ?switches? exp string subSpec varName

Searches string for substrings that match the regular expression exp and re-
places them with subSpec. The resulting string is copied into varName.

Regular expressions can be expressed in just a few rules. ˆ

Matches the beginning of a string $

Matches the end of a string .

Matches any single character *

Matches any count (0-n) of the previous character +

Matches any count, but at least 1 of the previous character [...]

Matches any character of a set of characters [̂...]

Matches any character *NOT* a member of the set of characters following the
.̂ (...)

groups a set of characer into a subSpec

Regular expressions are similar to the globbing that was discussed in lesson
16 (Section 3.3) and lesson 18 (Section 3.6). The main difference is in the way
that sets of matched characters are handled. In globbing the only way to select
sets of unknown text is the * symbol. This matches to any quantity of any
character.

3.9. REGULAR EXPRESSIONS 101 45

In regular expression parsing, the * symbol matches zero or more occurrences
of the character immediately proceeding the *. For example a* would match
a, aaaaa, or a blank string. If the character directly before the * is a set of
characters within square brackets, then the * will match any quantity of all of
these characters. For example, [a-c]* would match aa, abc, aabcabc, or again,
an empty string.

The + symbol behaves roughly the same as the *, except that it requires
at least one character to match. For example, [a-c]+ would match a, abc, or
aabcabc, but not an empty string.

Regular expression parsing is more powerful than globbing. With globbing
you can use square brackets to enclose a set of characters any of which will be
a match. Regular expression parsing also includes a method of selecting any

character not in a set. If the first character after the [is a caret ()̂, then the
regular expression parser will match any character not in the set of characters
between the square brackets. A caret can be included in the set of characters
to match (or not) by placing it in any position other than the first.

The regexp command is similar to the string match command in that it
matches an exp against a string. It is different in that it can match a portion
of a string, instead of the entire string, and will place the characters matched
into the matchVar variable.

If a match is found to the portion of a regular expression enclosed within
parentheses, regexp will copy the subset of matching characters to the subSpec

argument. This can be used to parse simple strings.

regsub will copy the contents of the string to a new variable, substituting the
characters that match exp with the characters in subSpec. If subSpec contains
a & or
0, then those characters will be replaced by the characters that matched exp.
If the number following a backslash is 1-9, then that backslash sequence will be
replaced by the appropriate portion of exp that is enclosed within parentheses.

Note that the exp argument to regexp or regsub is processed by the Tcl
substitution pass. Therefore almost always the expression should be enclosed
in braces to prevent any special processing by Tcl.

Example

set sample "Where there is a will, There is a way."

#

Match the first substring with lowercase letters only

#

set result [regexp {[a-z]+} $sample match]

puts "Result: $result match: $match"

#

Match the first two words, the first one allows uppercase

set result [regexp {([A-Za-z]+) +([a-z]+)} $sample match sub1 sub2]

puts "Result: $result Match: $match 1: $sub1 2: $sub2"

#

Replace a word

#

46 CHAPTER 3. DATA TYPES

regsub "way" $sample "lawsuit" sample2

puts "New: $sample2"

#

Use the -all option to count the number of "words"

#

puts "Number of words: [regexp -all {[^]+} $sample]"

Result:

Result: 1 match: here

Result: 1 Match: Where there 1: Where 2: there

New: Where there is a will, There is a lawsuit.

Number of words: 9

3.10 More Examples Of Regular Expressions

Regular expressions provide a very powerful method of defining a pattern, but
they are a bit awkward to understand and to use properly. So let us examine
some more examples in detail.

We start with a simple yet non-trivial example: finding floating-point num-
bers in a line of text. Do not worry: we will keep the problem simpler than it
is in its full generality. We only consider numbers like 1.0 and not 1.00e+01.

How do we design our regular expression for this problem? By examining
typical examples of the strings we want to match:

• Valid numbers are:

1.0, .02, +0., 1, +1, -0.0120

• Invalid numbers (that is, strings we do not want to recognise as numbers
but superficially look like them):

-, +., 0.0.1, 0..2, ++1

• Questionable numbers are:

+0000 and 0001

We will accept them - because they normally are accepted and because
excluding them makes our pattern more complicated.

A pattern is beginning to emerge:

• A number can start with a sign (- or +) or with a digit. This can be
captured with the expression [-+]?, which matches a single ”-”, a single
”+” or nothing.

• A number can have zero or more digits in front of a single period (.) and it
can have zero or more digits following the period. Perhaps: [0-9]*\\.[0-9]*
will do ...

3.10. MORE EXAMPLES OF REGULAR EXPRESSIONS 47

• A number may not contain a period at all. So, revise the previous expres-
sion to: [0-9]*\\.?[0-9]*

The total expression is:

[-+]?[0-9]*\.?[0-9]*

At this point we can do three things:

• Try the expression with a bunch of examples like the ones above and see
if the proper ones match and the others do not.

• Try to make it look nicer, before we start off testing it. For instance the
class of characters ”[0-9]” is so common that it has a shortcut, ”
d”. So, we could settle for:

[-+]?\d*\.?\d*

instead. Or we could decide that we want to capture the digits before and
after the period for special processing:

[-+]?([0-9])*\.?([0-9]*)

• Or, and that may be a good strategy in general!, we can carefully examine
the pattern before we start actually using it.

You see, there is a problem with the above pattern: all the parts are optional,
that is, each part can match a null string - no sign, no digits before the period,
no period, no digits after the period. In other words: Our pattern can match
an empty string!

Our questionable numbers, like ”+000” will be perfectly acceptable and we
(grudgingly) agree. But more surprisingly, the strings ”–1” and ”A1B2” will be
accepted too! Why? Because the pattern can start anywhere in the string, so
it would match the substrings ”-1” and ”1” respectively!

We need to reconsider our pattern - it is too simple, too permissive:

• The character before a minus or a plus, if there is any, can not be another
digit, a period or a minus or plus. Let us make it a space or a tab or the
beginning of the string: \^|[\\t]. This may look a bit strange, but what
it says is: either the beginning of the string (ôutside the squarebrackets)
or (the vertical bar) a space or tab (remember: the string ”
t” represents the tab character).

• Any sequence of digits before the period (if there is one) is allowed:
[0-9]+\\.?

• There may be zero digits in front of the period, but then there must be at
least one digit behind it: \\.[0-9]+

• And of course digits in front and behind the period: [0-9]+\\.[0-9]+

• The character after the string (if any) can not be a ”+”,”-” or ”.” as that
would get us into the unacceptable number-like strings: \$|[\^+-.] (The
dollar sign signifies the end of the string)

48 CHAPTER 3. DATA TYPES

Before trying to write down the complete regular expression, let us see what
different forms we have:

• No period: [-+]?[0-9]+

• A period without digits before it: [-+]?\\.[0-9]+

• Digits before a period, and possibly digits after it: [-+]?[0-9]+\\.[0-9]*

Now the synthesis:

(^|[\t])([-+]?([0-9]+|\.[0-9]+|[0-9]+\.[0-9]*))($|[^+-.])

Or:

(^|[\t])([-+]?(\d+|\.\d+|\d+\.\d*))($|[^+-.])

The parentheses are needed to distinguish the alternatives introduced by
the vertical bar and to capture the substring we want to have. Each set of
parentheses also defines a substring and this can be put into a separate variable:

regexp {.....} $line whole char_before number nosign char_after

#

Or simply only the recognised number (x’s as placeholders, the

last can be left out

#

regexp {.....} $line x x number

Tip: To identify these substrings: just count the opening parentheses from
left to right.

If we put it to the test:

set pattern {(^|[\t])([-+]?(\d+|\.\d+|\d+\.\d*))($|[^+-.])}

set examples {"1.0" " .02" " +0."

"1" "+1" " -0.0120"

"+0000" " - " "+."

"0001" "0..2" "++1"

"A1.0B" "A1"}

foreach e $examples {

if { [regexp $pattern $e whole \

char_before number digits_before_period] } {

puts ">>$e<<: $number ($whole)"

} else {

puts ">>$e<<: Does not contain a valid number"

}

}

the result is:

>>1.0<<: 1.0 (1.0)

>> .02<<: .02 (.02)

>> +0.<<: +0. (+0.)

>>1<<: 1 (1)

3.10. MORE EXAMPLES OF REGULAR EXPRESSIONS 49

>>+1<<: +1 (+1)

>> -0.0120<<: -0.0120 (-0.0120)

>>+0000<<: +0000 (+0000)

>> - <<: Does not contain a valid number

>>+.<<: Does not contain a valid number

>>0001<<: 0001 (0001)

>>0..2<<: Does not contain a valid number

>>++1<<: Does not contain a valid number

>>A1.0B<<: Does not contain a valid number

>>A1<<: Does not contain a valid number

So our pattern correctly accepts the strings we intended to be recognised as
numbers and rejects the others.

Let us turn to some other patterns now:

• Text enclosed in a string: This is ”quoted text”. If we know the enclosing
character in advance (double quotes, ” in this case), then "([\^"])*" will
capture the text inside the double quotes.

Suppose we do not know the enclosing character (it can be ” or ’). Then:

regexp {(["’])[^"’]*\1} $string enclosed_string

will do it; the
1 is a so-called back-reference to the first captured substring.

• You can use this technique to see if a word occurs twice in the same line
of text:

set string "Again and again and again ..."

if { [regexp {(\y\w+\y).+\1} $string => word] } {

puts "The word $word occurs at least twice"

}

(The pattern
y matches the beginning or the end of a word and
w+ indicates we want at least one character).

• Suppose you need to check the parentheses in some mathematical expres-
sion: (1+a)/(1-b*x) for instance. A simple check is counting the open
and close parentheses:

#

Use the return value of [regexp] to count the number of

parentheses ...

#

if { [regexp -all {(} $string] != [regexp -all {)} $string] } {

puts "Parentheses unbalanced!"

}

50 CHAPTER 3. DATA TYPES

Of course, this is just a rough check. A better one is to see if at any point
while scanning the string there are more close parentheses than open parenthe-
ses. We can easily extract the parentheses and put them in a list (the -inline
option does that):

set parens [regexp -inline -all {[()]} $string]

set balance 0 set change("(") 1 ;# This technique saves an if-block :)

set change(")") -1

foreach p $parens {

incr balance $change($p)

if { $balance < 0 } {

puts "Parentheses unbalanced!"

}

}

if { $balance != 0 } {

puts "Parentheses unbalanced!"

}

Finally: Regular expressions are very powerful, but they have certain the-
oretical limitations. One of these limitations is that they are not suitable for
parsing arbitrarily nested text.

You can experiment with regular expressions using the VisualRegexp (http:
//wiki.tcl.tk/4086) or Visual REGEXP (http://wiki.tcl.tk/7992) appli-
cations.

More on the theoretical background and practical use of regular expressions
(there is lots to cover!) can be found in the book Mastering Regular Expressions
(http://wiki.tcl.tk/127) by J. Friedl.

3.11 More Quoting Hell - Regular Expressions
102

regexp ?switches? exp string ?matchVar? ?subMatch1 ... subMatchN?

Searches string for the regular expression exp. If a parameter matchVar is
given, then the substring that matches the regular expression is copied to
matchVar. If subMatchN variables exist, then the parenthetical parts of the
matching string are copied to the subMatch variables, working from left to
right. regsub ?switches? exp string subSpec varName

Searches string for substrings that match the regular expression exp and re-
places them with subSpec. The resulting string is copied into varName.

The regular expression (exp) in the two regular expression parsing commands
is evaluated by the Tcl parser during the Tcl substitution phase. This can
provide a great deal of power, and also requires a great deal of care.

These examples show some of the trickier aspects of regular expression eval-
uation. The fields in each example are discussed in painful detail in the most
verbose level.

The points to remember as you read the examples are:

http://wiki.tcl.tk/4086
http://wiki.tcl.tk/4086
http://wiki.tcl.tk/7992
http://wiki.tcl.tk/127

3.11. MORE QUOTING HELL - REGULAR EXPRESSIONS 102 51

* A left square bracket ([) has meaning to the substitution phase, and to the
regular expression parser. * A set of parentheses, a plus sign, and a star have
meaning to the regular expression parser, but not the Tcl substitution phase. *
A backslash sequence (
n,
t, etc) has meaning to the Tcl substitution phase, but not to the regular expres-
sion parser. * A backslash escaped character (

The phase at which a character has meaning affects how many escapes are
necessary to match the character you wish to match. An escapecan be either en-
closing the phrase in braces, or placing a backslash beforethe escaped character.
To pass a left bracket to the regular expression parser to evaluate as arange of
characters takes 1 escape. To have the regular expressionparser match a literal
left bracket takes 2 escapes (one to escape the bracket in the Tcl substitution
phase, and one to escape the bracket inthe regular expression parsing.). If you
have the string placed withinquotes, then a backslash that you wish passed to
the regular expressionparser must also be escaped with a backslash. Note: You
can copy the code and run it in tclsh or wish to see the effects.

Example

#

Examine an overview of UNIX/Linux disks

#

set list1 [list \

{/dev/wd0a 17086 10958 5272 68% /}\

{/dev/wd0f 179824 127798 48428 73% /news}\

{/dev/wd0h 1249244 967818 218962 82% /usr}\

{/dev/wd0g 98190 32836 60444 35% /var}]

foreach line $list1 {

regexp {[^]* *([0-9]+)[^/]*(/[a-z]*)} $line match size mounted

puts "$mounted is $size blocks"

}

#

Extracting a hexadecimal value ...

#

set line {Interrupt Vector? [32(0x20)]}

regexp "\[^\t]+\t\\\[\[0-9]+\\(0x(\[0-9a-fA-F]+)\\)]" $line match hexval

puts "Hex Default is: 0x$hexval"

#

Matching the special characters as if they were ordinary

#

set str2 "abc^def"

regexp "\[^a-f]*def" $str2 match

puts "using \[^a-f] the match is: $match"

regexp "\[a-f^]*def" $str2 match

puts "using \[a-f^] the match is: $match"

regsub {\^} $str2 " is followed by: " str3

puts "$str2 with the ^ substituted is: \"$str3\""

52 CHAPTER 3. DATA TYPES

regsub "(\[a-f]+)\\^(\[a-f]+)" $str2 "\\2 follows \\1" str3

puts "$str2 is converted to \"$str3\""

Result:

/ is 17086 blocks

/news is 179824 blocks

/usr is 1249244 blocks

/var is 98190 blocks

Hex Default is: 0x20

using [^a-f] the match is: ^def

using [a-f^] the match is: abc^def

abc^def with the ^ substituted is: "abc is followed by: def"

abc^def is converted to "def follows abc"

3.12 Associative Arrays.

Languages like C, BASIC, Fortran and Java support arrays in which the index
value is an integer. Tcl, like most scripting languages (Perl, Python, PHP, etc...)
supports associative arrays (also known as ”hash tables”) in which the index
value is a string.

The syntax for an associative array is to put the index within parentheses:

set name(first) "Mary"

set name(last) "Poppins"

puts "Full name: $name(first) $name(last)"

There are several array commands aside from simply accessing and creating
arrays which will be discussed in this and the next lesson.

‘array exists arrayName‘
Returns 1 if arrayName is an array variable. Returns 0 if arrayName is a scalar
variable, proc, or does not exist.

‘array names arrayName ?pattern‘
Returns a list of the indices for the associative array arrayName. If pattern
is supplied, only those indices that match pattern are returned. The match is
done using the globbing technique from string match.

‘array size arrayName‘
Returns the number of elements in array arrayName.

‘array get arrayName‘
Returns a list in which each odd member of the list (1, 3, 5, etc) is an index
into the associative array. The list element following a name is the value of that
array member.

‘array set arrayName dataList‘
Converts a list into an associative array. DataList is a list in the format of that

3.12. ASSOCIATIVE ARRAYS. 53

returned by array get. Each odd member of the list (1, 3, 5, etc) is an index
into the associative array, and the list element following that is the value of that
array member.

‘array unset arrayName ?pattern¿
Unsets all of the elements in the array. If pattern exists, only the elements that
match pattern are unset.

When an associative array name is given as the argument to the global

command, all the elements of the associative array become available to that
proc. For this reason, Brent Welch recommends (in ¡I¿Practical Programming
in Tcl and Tk¡/I¿) using an associative array for the state structure in a package.

This method makes it simpler to share data between many procs that are
working together, and doesn’t pollute the global namespace as badly as using
separate globals for all shared data items.

Another common use for arrays is to store tables of data. In the example
below we use an array to store a simple database of names.

Examples

Example 1

proc addname {first last} {

global name

Create a new ID (stored in the name array too for easy access)

incr name(ID)

set id $name(ID)

set name($id,first) $first ;# The index is simply a string!

set name($id,last) $last ;# So we can use both fixed and

;# varying parts

}

#

Initialise the array and add a few names

#

global name

set name(ID) 0

addname Mary Poppins

addname Uriah Heep

addname Rene Descartes

addname Leonardo "da Vinci"

#

Check the contents of our database

The parray command is a quick way to

print it

#

54 CHAPTER 3. DATA TYPES

parray name

Result:

name(1,first) = Mary

name(1,last) = Poppins

name(2,first) = Uriah

name(2,last) = Heep

name(3,first) = Rene

name(3,last) = Descartes

name(4,first) = Leonardo

name(4,last) = da Vinci

name(ID) = 4

Example 2

#

Some array commands

#

array set array1 [list {123} {Abigail Aardvark} \

{234} {Bob Baboon} \

{345} {Cathy Coyote} \

{456} {Daniel Dog}]

puts "Array1 has [array size array1] entries\n"

puts "Array1 has the following entries: \n [array names array1] \n"

puts "ID Number 123 belongs to $array1(123)\n"

if {[array exist array1]} {

puts "array1 is an array"

} else {

puts "array1 is not an array"

}

if {[array exist array2]} {

puts "array2 is an array"

} else {

puts "array2 is not an array"

}

proc existence {variable} {

upvar $variable testVar

if { [info exists testVar] } {

puts "$variable Exists"

} else {

puts "$variable Does Not Exist"

}

3.12. ASSOCIATIVE ARRAYS. 55

}

Result:

Array1 has 4 entries

Array1 has the following entries:

345 234 123 456

ID Number 123 belongs to Abigail Aardvark

array1 is an array

array2 is not an array

Example 3

Create an array

for {set i 0} {$i < 5} {incr i} { set a($i) test }

puts "\ntesting unsetting a member of an array"

existence a(0)

puts "a0 has been unset"

unset a(0)

existence a(0)

puts "\ntesting unsetting several members of an array, with an error"

existence a(3)

existence a(4)

catch {unset a(3) a(0) a(4)}

puts "\nAfter attempting to delete a(3), a(0) and a(4)"

existence a(3)

existence a(4)

puts "\nUnset all the array’s elements"

existence a

array unset a *

puts "\ntesting unsetting an array"

existence a

puts "a has been unset"

unset a

existence a

Result:

testing unsetting a member of an array

a(0) Exists

a0 has been unset

a(0) Does Not Exist

56 CHAPTER 3. DATA TYPES

testing unsetting several members of an array, with an error

a(3) Exists

a(4) Exists

After attempting to delete a(3), a(0) and a(4)

a(3) Does Not Exist

a(4) Exists

Unset all the array’s elements

a Exists

testing unsetting an array

a Exists

a has been unset

a Does Not Exist

3.13 More Array Commands - Iterating and use
in procedures

Often you will want to loop through the contents of an associative array -
without having to specify the elements explicitly. For this the array names

and array get commands are very useful. With both you can give a (glob-
style) pattern to select what elements you need:

foreach name [array names mydata] {

puts "Data on \"$name\": $mydata($name)"

}

#

Get names and values directly

#

foreach {name value} [array get mydata] {

puts "Data on \"$name\": $value"

}

Note, however, that the elements will not be returned in any predictable
order: this has to do with the underlying ”hash table”. If you want a particular
ordering (alphabetical for instance), use code like:

foreach name [lsort [array names mydata]] {

puts "Data on \"$name\": $mydata($name)"

}

While arrays are great as a storage facility for some purposes, they are a
bit tricky when you pass them to a procedure: they are actually collections of
variables. This will not work:

proc print12 {a} {

puts "$a(1), $a(2)"

3.13. MORE ARRAY COMMANDS - ITERATING ANDUSE IN PROCEDURES57

}

set array(1) "A"

set array(2) "B"

print12 $array

Result:

can’t read "array": variable is array

while executing

"print12 $array"

(file "xx.tcl" line 8)

The reason is very simple: an array does not have a value. Instead the above
code should be:

proc print12 {array} {

upvar $array a

puts "$a(1), $a(2)"

}

set array(1) "A"

set array(2) "B"

print12 array

So, instead of passing a ”value” for the array, you pass the name. This gets
aliased (via the upvar command) to a local variable (that behaves the as original
array). You can make changes to the original array in this way too.

Example

#

The example of the previous lesson revisited - to get a

more general "database"

#

proc addname {db first last} {

upvar $db name

Create a new ID (stored in the name array too for easy access)

incr name(ID)

set id $name(ID)

set name($id,first) $first ;# The index is simply a string!

set name($id,last) $last ;# So we can use both fixed and

;# varying parts

}

58 CHAPTER 3. DATA TYPES

proc report {db} {

upvar $db name

Loop over the last names: make a map from last name to ID

foreach n [array names name "*,last"] {

#

Split the name to get the ID - the first part of the name!

#

regexp {^[^,]+} $n id

#

Store in a temporary array:

an "inverse" map of last name to ID)

#

set last $name($n)

set tmp($last) $id

}

#

Now we can easily print the names in the order we want!

#

foreach last [lsort [array names tmp]] {

set id $tmp($last)

puts " $name($id,first) $name($id,last)"

}

}

#

Initialise the array and add a few names

#

set fictional_name(ID) 0

set historical_name(ID) 0

addname fictional_name Mary Poppins

addname fictional_name Uriah Heep

addname fictional_name Frodo Baggins

addname historical_name Rene Descartes

addname historical_name Richard Lionheart

addname historical_name Leonardo "da Vinci"

addname historical_name Charles Baudelaire

addname historical_name Julius Caesar

#

Some simple reporting

#

puts "Fictional characters:"

report fictional_name

puts "Historical characters:"

3.14. DICTIONARIES AS ALTERNATIVE TO ARRAYS 59

report historical_name

Result:

Fictional characters:

Frodo Baggins

Uriah Heep

Mary Poppins

Historical characters:

Charles Baudelaire

Julius Caesar

Rene Descartes

Richard Lionheart

Leonardo da Vinci

3.14 Dictionaries as alternative to arrays

• They cannot be passed directly to a procedure as a value. Instead you
have to use the array get and array set commands to convert them to
a value and back again, or else use the upvar command to create an alias
of the array.

• Multidimensional arrays (that is, arrays whose index consists of two or
more parts) have to be emulated with constructions like:

set array(foo,2) 10

set array(bar,3) 11

The comma used here is not a special piece of syntax, but instead just part
of the string key. In other words, we are using a one-dimensional array,with
keys like ”foo,2” and ”bar,3”. This is quite possible, but it can become very
clumsy (there can be no intervening spaces for instance).

• Arrays cannot be included in other data structures, such as lists, or sent
over a communications channel, without first packing and unpacking them
into a string value.

The alternative is the dict command. This provides efficient access to key-
value pairs, just like arrays, but these dictionaries are pure values. This means
that you can pass them to a procedure just as a list or a string, without the need
for dict. Tcl dictionaries are therefore much more like Tcl lists, except that
they represent a mapping from keys to values, rather than an ordered sequence.

Unlike arrays, you can nest dictionaries, so that the value for a particular
key consists of another dictionary. That way you can elegantly build compli-
cated data structures, such as hierarchical databases. You can also combine
dictionaries with other Tcl data structures. For instance, you can build a list of
dictionaries that themselves contain lists.

Here is an example (adapted from the man page):

60 CHAPTER 3. DATA TYPES

#

Create a dictionary:

Two clients, known by their client number,

with forenames, surname

#

dict set clients ID1 forenames Joe

dict set clients ID1 surname Schmoe

dict set clients ID2 forenames Anne

dict set clients ID2 surname Other

#

Print a table

#

puts "Number of clients: [dict size $clients]"

dict for {id info} $clients {

puts "Client $id:"

dict with info {

puts " Name: $forenames $surname"

}

}

• What happens in this example is: We fill a dictionary, called clients, with
the information we have on two clients. The dictionary has two keys, ”1”
and ”2” and the value for each of these keys is itself a (nested) dictio-
nary – again with two keys: ”forenames” and ”surname”. The dict set

command accepts a list of key names which act as a path through the
dictionary. The last argument to the command is the value that we want
to set. You can supply as many key arguments to the dict set command
as you want, leading to arbitrarily complicated nested data structures. Be
careful though! Flat data structure designs are usually better than nested
for most problems.

• The dict for command then loops through each key and value pair in the
dictionary (at the outer-most level only). dict for is essentially a version
of foreach that is specialised for dictionaries. We could also have writ-
ten this line as: foreach {id info} \$clients { ... }. This takes
advantage of the fact that, in Tcl, every dictionary is also a valid Tcl list,
consisting of a sequence of name and value pairs representing the contents
of the dictionary. The dict for command is preferred when working with
dictionaries, however, as it is both more efficient, and makes it clear to
readers of the code that we are dealing with a dictionary and not just a
list.

• To get at the actual values in the dictionary that is stored with the client
IDs we use the dict with command. This command takes the dictionary
and unpacks it into a set of local variables in the current scope. For
instance, in our example, the ”info” variable on each iteration of the outer
loop will contain a dictionary with two keys: ”forenames” and ”surname”.
The dict with command unpacks these keys into local variables with the

3.14. DICTIONARIES AS ALTERNATIVE TO ARRAYS 61

same name as the key and with the associated value from the dictionary.
This allows us to use a more convenient syntax when accessing the values,
instead of having to use dict get everywhere. A related command is the
dict update command, that allows you to specify exactly which keys you
want to convert into variables. Be aware that any changes you make to
these variables will be copied back into the dictionary when the dict with

command finishes.

The order in which elements of a dictionary are returned during a dict for

loop is defined to be the chronological order in which keys were added to the
dictionary. If you need to access the keys in some other order, then it is ad-
visable to explicitly sort the keys first. For example, to retrieve all elements
of a dictionary in alphabetical order, based on the key, we can use the lsort

command:

foreach name [lsort [dict keys $mydata]] {

puts "Data on \"$name\": [dict get $mydata $name]"

}

Example

In this example, we convert the simple database of the previous lessons to work
with dictionaries instead of arrays.

#

The example of the previous lesson revisited - using dicts.

#

proc addname {dbVar first last} {

upvar 1 $dbVar db

Create a new ID (stored in the name array too for easy access)

dict incr db ID

set id [dict get $db ID]

Create the new record

dict set db $id first $first

dict set db $id last $last

}

proc report {db} {

Loop over the last names: make a map from last name to ID

dict for {id name} $db {

Create a temporary dictionary mapping from

last name to ID, for reverse lookup

if {$id eq "ID"} { continue }

set last [dict get $name last]

dict set tmp $last $id

62 CHAPTER 3. DATA TYPES

}

#

Now we can easily print the names in the order we want!

#

foreach last [lsort [dict keys $tmp]] {

set id [dict get $tmp $last]

puts " [dict get $db $id first] $last"

}

}

#

Initialise the array and add a few names

#

dict set fictional_name ID 0

dict set historical_name ID 0

addname fictional_name Mary Poppins

addname fictional_name Uriah Heep

addname fictional_name Frodo Baggins

addname historical_name Rene Descartes

addname historical_name Richard Lionheart

addname historical_name Leonardo "da Vinci"

addname historical_name Charles Baudelaire

addname historical_name Julius Caesar

#

Some simple reporting

#

puts "Fictional characters:"

report $fictional_name

puts "Historical characters:"

report $historical_name

Note that in this example we use dictionaries in two different ways. In the
addname procedure, we pass the dictionary variable by name and use upvar to
make a link to it, as we did previously for arrays. We do this so that changes
to the database are reflected in the calling scope, without having to return
a new dictionary value. (Try changing the code to avoid using upvar). In the
report procedure, however, we pass the dictionary as a value and use it directly.
Compare the dictionary and array versions of this example (from the previous
lesson (Section 3.13)) to see the differences between the two data structures and
how they are used.

Chapter 4

Input and Output

4.1 File Access 101

Tcl provides several methods to read from and write to files on disk. The
simplest methods to access a file are via gets and puts. When there is a lot
of data to be read, however, it is sometimes more efficient to use the read

command to load an entire file, and then parse the file into lines with the split

command.
These methods can also be used for communicating over sockets and pipes.

It is even possible, via the so-called virtual file system to use files stored in
memory rather than on disk. Tcl provides an almost uniform interface to these
very different resources, so that in general you do not need to concern yourself
with the details.

open fileName ?access? ?permission?

Opens a file and returns a token to be used when accessing the file via gets,
puts, close, etc.

• fileName is the name of the file to open.

• access is the file access mode

%Mode Meaning%
r Open the file for reading. The file must already exist.
r+ Open the file for reading and writing. The file must already exist.
w Open the file for writing. Create the file if it doesn’t exist, or set the length to zero if it does exist.
w+ Open the file for reading and writing. Create the file if it doesn’t exist, or set the length to zero if it does exist.
a Open the file for writing. The file must already exist. Set the current location to the end of the file.
a+ Open the file for writing. Create the file if it does not exist. Set the current location to the end of the file.

• permission is an integer to use to set the file access permissions (most use-
ful under Linux and other UNIX-like systems). The default is rw-rw-rw-
(0666). You can use it to set the permissions for the file’s owner, the group
he/she belongs to and for all the other users. For many applications, the
default is fine.

63

64 CHAPTER 4. INPUT AND OUTPUT

close fileID

Closes a file previously opened with open, and flushes any remaining output.

gets fileID ?varName?

Reads a line of input from fileID, and discards the terminating newline. If
there is a varName argument, gets returns the number of characters read (or -1
if an EOF occurs), and places the line of input in varName. If varName is not
specified, gets returns the line of input. An empty string will be returned if:

• There is a blank line in the file.

• The current location is at the end of the file. (An EOF occurs.) A typical
loop to read the file line-by-line:

set infile [open "myfile.txt"]

while { gets $infile line] >= 0 } {

...

}

puts ?-nonewline? ?fileID? string

Writes the characters in string to the stream referenced by fileID, where
fileID is one of:

• The value returned by a previous call to open with write access.

• stdout (standard output, the screen mostly)

• stderr (standard error, also the screen)

read ?-nonewline? fileID

Reads all the remaining bytes from fileID, and returns that string. If -nonewline
is set, then the last character will be discarded if it is a newline. Any existing
end of file condition is cleared before the read command is executed.

read fileID numBytes

Reads up to numBytes from fileID, and returns the input as a Tcl string. Any
existing end of file condition is cleared before the read command is executed.

seek fileID offset ?origin?

Change the current position within the file referenced by fileID. Note that if
the file was opened with ”a” access that the current position can not be set
before the end of the file for writing, but can be set to the beginning of the file
for reading.

• fileID is one of:

** a file identifier returned by open ** stdin (standard input, the keyboard
mostly) ** stdout ** stderr

4.1. FILE ACCESS 101 65

• offset is the offset in bytes at which the current position is to be set.
The position from which the offset is measured defaults to the start ofthe
file, but can be from the current location, or the end by setting origin

appropriately.

• origin is the position to measure offset from. It defaults to the start of
the file. origin must be one of:

** start - the offset is measured from the start of the file. ** current

- the offset is measured from the current position in the file. ** end - the
offset is measured from the end of the file.

tell fileID

Returns the position of the access pointer in fileID.

flush fileID

Flushes any output that has been buffered for fileID.

eof fileID‘
Returns 1 if an End Of File condition exists, otherwise returns 0.

Points to remember about Tcl file access:

• The file I/O is buffered. The output may not be sent out when you expect
it to be sent. Files will all be closed and flushed when your program
exits normally, but may only be closed (not flushed) if the program is
terminated in an unexpected manner.

• There are a finite number of open file slots available. While the exact
number depends on the operating system you are using and its configura-
tion, in practice you can have several hundreds of open files at a time. If
you need more than that, you may need to reexamine your program.

• An empty line is indistinguishable from an EOF with the command:
set string [gets filename] Use the eof command todetermine if the
file is at the end or use the other form of gets (see the example).

• You can’t overwrite any data in a file that was opened with‘a‘ (append)
access. You can, however, seek to the beginning of the file for gets

commands.

• Opening a file with the w+ access will allow you to overwrite data, but will
delete all existing data in the file.

• Opening a file with the r+ access will allow you to overwrite data, while
saving the existing data in the file.

• By default the commands assume that strings represent ”readable” text.
If you want to read ”binary” data, you will have to use the fconfigure

command.

• Often, especially if you deal with configuration data for your programs,
you can use the source command instead of the relatively low-level com-
mands presentedhere. Just make sure your data can be interpreted as Tcl
commands and ”source” the file.

66 CHAPTER 4. INPUT AND OUTPUT

Example

#

Count the number of lines in a text file

#

set infile [open "myfile.txt" r]

set number 0

#

gets with two arguments returns the length of the line,

-1 if the end of the file is found

#

while { [gets $infile line] >= 0 } {

incr number

}

close $infile

puts "Number of lines: $number"

#

Also report it in an external file

#

set outfile [open "report.out" w]

puts $outfile "Number of lines: $number"

close $outfile

4.2 Information about Files - file, glob

There are two commands that provide information about the file system, glob
and file. They provide a method to examine and manipulate the files and
directories that is virtually indepedent of the operating system. Some subcom-
mands and pieces of information are, however, necessarily system-dependent, as
they refer to features of a particular operating system.

glob returns the names of files and subdirectories in a directory. It uses a
name matching mechanism similar to the UNIX ls command or the Windows
(DOS) dir command, to return a list of names that match a pattern.

file provides three sets of functionality:

• String manipulation appropriate to parsing file names

• Information about an entry in a directory:

• Manipulating the files and directories themselves:

Between these two commands, a program can obtain most of the informa-
tion that it needs and can manipulate the files and directories. While retrieving
information about what files are present and what properties they have is usu-
ally a highly platform-dependent matter, Tcl provides an interface that hides

4.2. INFORMATION ABOUT FILES - FILE, GLOB 67

Subcommand Purpose
dirname Returns directory portion of path
extension Returns file name extension
join Join directories and the file name to one string
nativename Returns the native name of the file/directory
rootname Returns file name without extension
split Split the string into directory and file names
tail Returns filename without directory

Subcommand Purpose
atime Returns time of last access
executable Returns 1 if file is executable by the user
exists Returns 1 if file exists, 0 otherwise
isdirectory Returns 1 if entry is a directory, 0 otherwise
isfile Returns 1 if entry is a regular file, 0 if not
lstat Returns array of file status information
mtime Returns time of last data modification
owned Returns 1 if file is owned by the user
readable Returns 1 if file is readable by the user
readlink Returns name of file pointed to by a symbolic link
size Returns file size in bytes
stat Returns array of file status information
type Returns type of file
writable Returns 1 if file is writeable by the user

Subcommand Purpose
copy Copy a file or a directory
delete Delete a file or a directory
mkdir Create a new directory
rename Rename or move a file or directory

almost all details that are specific to the platform (but are irrelevant to the
programmer).

To take advantage of this feature, always manipulate file names via the
file join and file split commands and the others in the first category.

For instance to refer to a file in a directory upwards of the current one:

set upfile [file join ".." "myfile.out"]

upfile will have the value "../myfile.out"

(The ”..” indicates the ”parent directory”) Because external commands may
not always deal gracefully with the uniform representation that Tcl employs
(with forward slashes as directory separators), Tcl also provides a command to
turn the string into one that is native to the platform:

#

On Windows the name becomes "..\myfile.out"

#

set newname [file nativename [file join ".." "myfile.out"]]

Retrieving all the files with extension ”.tcl” in the current directory:

68 CHAPTER 4. INPUT AND OUTPUT

set tclfiles [glob *.tcl]

puts "Name - date of last modification"

foreach f $tclfiles {

puts "$f - [clock format [file mtime $f] -format %x]"

}

(The clock command turns the number of seconds returned by the file mtime

command into a simple date string, like ”07/01/2017”)

glob ?switches? pattern ?pattern2 ...?

Returns a list of file names that match pattern or pattern2, ... The switches

may be one of the following (there are more switches available):

• -nocomplain allows glob to return an empty list without causing an error.
Without this flag, an error would be generated when the empty list was
returned.

• -types typeList selects which type of files/directory the command should
return. The typeList may consist of type letters, like a ”d” for directories
and ”f” for ordinary files as well as letters and keywords indicating the
user’s permissions (”r” for files/directories that can be read for instance).

• -- marks the end of switches. This allows the use of ”-” in a pattern
without confusing the glob parser.

The pattern follows the same matching rules as the string match globbing
rules with these exceptions:

• {a,b,...} Matches any of the strings a,b, etc.

• A ”.” at the beginning of a filename must match a ”.” in the filename.
The ”.” is only a wildcard if it is not the first character in a name.

• All ”/” must match exactly.

• If the first two characters in pattern are ~/, then the ~ is replaced by the
value of the HOME environment variable.

• If the first character in pattern is a‘ ‘, followed by a login id, then the
~loginid is replaced by the path of loginid’s home directory.

Note that the filenames that match pattern are returned in an arbitrary
order (that is, do not expect them to be sorted in alphabetical order, for in-
stance).

file atime name

Returns the number of seconds since some system-dependent start date, also
known as the ”epoch” (frequently 1/1/1970) when the file name was last ac-
cessed. Generates an error if the file doesn’t exist, or the access time cannot be
queried.

4.2. INFORMATION ABOUT FILES - FILE, GLOB 69

file copy ?-force? name target

Copy the file/directory name to a new file target (or to an existing directory
with that name). The switch -force allows you to overwrite existing files.

file delete ?-force? name

Delete the file/directory name. The switch -force allows you to delete non-
empty directories.

file dirname name

Returns the directory portion of a path/filename string. If name contains no
slashes, file dirname returns a ”.”.

file executable name

Returns 1 if file name is executable by the current user, otherwise returns 0.

file exists name

Returns 1 if the file name exists, and the user has search access in all the direc-
tories leading to the file. Otherwise, 0 is returned.

file extension name

Returns the file extension.

file isdirectory name

Returns 1 if file name is a directory, otherwise returns 0.

file isfile name

Returns 1 if file name is a regular file, otherwise returns 0.

file lstat name varName

This returns the same information returned by the system call lstat. The
results are placed in the associative array varName. The indexes in varName

are:

• atime - time of last access

• ctime - time of last file status change

• dev - inode’s device

• gid - group ID of the file’s group

• ino - inode’s number

• mode - inode protection mode

• mtime - time of last data modification

• nlink - number of hard links

• size - file size, in bytes

• type - type of file

• uid - user ID of the file’s owner

70 CHAPTER 4. INPUT AND OUTPUT

Note: Because this calls lstat, if name is a symbolic link,the values in
varName will refer to the link, not the file that is linked to.(See also the stat

subcommand)

file mkdir name

Create a new directory name.

file mtime name

Returns the time of the last modification in seconds since Jan 1, 1970 or what-
ever start date (also known as epoch) the system uses.

file owned name

Returns 1 if the file is owned by the current user, otherwise returns 0.

file readable name

Returns 1 if the file is readable by the current user, otherwise returns 0.

file readlink name

Returns the name of the file a symlink is pointing to. If name isn’t a symlink,
or can’t be read, an error is generated.

file rename \verb?-force? name target‘
Rename file/directory name to the new name target (or to an existing directory
with that name). The switch -force allows you to overwrite existing files.

file rootname name

Returns all the characters in name up to but not including the last ”.”. Returns
the name if name doesn’t include a ”.”.

file size name

Returns the size of name in bytes.

file stat name varName

This returns the same information returned by the system call stat. The results
are placed in the associative array varName. The indexes in varName are:

• atime - time of last access

• ctime - time of last file status change

• dev - inode’s device

• gid - group ID of the file’s group

• ino - inode’s number

• mode - inode protection mode

• mtime - time of last data modification

• nlink - number of hard links

• size - file size in bytes

4.2. INFORMATION ABOUT FILES - FILE, GLOB 71

• type - type of file

• uid - user ID of the file’s owner

file tail name

Returns all of the characters in name after the last slash. Returns the name if
name contains no slashes.

file type name

Returns a string giving the type of file name, which will be one of:

• file - normal file

• directory - directory

• characterSpecial - character oriented device

• blockSpecial - block oriented device

• fifo - named pipe

• link - symbolic link

• socket - named socket

file writable name

Returns 1 if file name is writable by the current user, otherwise returns 0.
Note: The overview given above does not cover all the details of the various

subcommands, nor does it list all subcommands. Please check the man pages
for these.

Example

#

Report all the files and subdirectories in the current directory

For files: show the size

For directories: show that they _are_ directories

#

set dirs [glob -nocomplain -type d *]

if { [llength $dirs] > 0 } {

puts "Directories:"

foreach d [lsort $dirs] {

puts " $d"

}

} else {

puts "(no subdirectories)"

}

set files [glob -nocomplain -type f *]

if { [llength $files] > 0 } {

puts "Files:"

72 CHAPTER 4. INPUT AND OUTPUT

foreach f [lsort $files] {

puts " [file size $f] - $f (extension: [file extension $f])"

}

} else {

puts "(no files)"

}

Result: The output of the above example for an arbitrary directory:

Directories:

CVS

figs

html

latex

pdf

Files:

36 - .cvsignore (extension: .cvsignore)

4 - .tex2page.hdir (extension: .hdir)

461 - Makefile (extension:)

509 - README.txt (extension: .txt)

2708 - refs.bib (extension: .bib)

4.3 Running other programs from Tcl - exec,
open

So far the lessons have dealt with programming within the Tcl interpreter.
However, Tcl is also useful as a scripting language to tie other packages or
programs together. To accomplish this function, Tcl has two ways to start
another program:

• open - run a new program and open a file-like connection to this program.

• exec - run a new program as a more or less independent subprocess

The open call is the same call that is used to open a file. If the first character
in the file name argument is a ”pipe” symbol (|), then open will treat the rest of
the argument as a program name, and will run that program with the standard
input or output connected to a file descriptor. This ”pipe” connection can be
used to read the output from that other program or to write fresh input data
to it or both.

If the ”pipe” is opened for both reading and writing you must be aware that
the pipes are buffered. The output from a puts command will be saved in an
I/O buffer until the buffer is full, or until you execute a flush command to force
it to be transmitted to the other program. The output of this other program
will not be available to a read or gets until its output buffer is filled up or
flushed explicitly.

(Note: as this is internal to this other program, there is no way that your Tcl
script can influence that. The other program simply must cooperate. Well, that
is not entirely true: the Expect extension actually works around this limitation
by exploiting deep system features.)

4.3. RUNNING OTHER PROGRAMS FROM TCL - EXEC, OPEN 73

The exec call is similar to invoking a program (or a set of programs piped to-
gether) from the prompt in an interactive shell or a DOS-box or in a UNIX/Linux
shell script. It supports several styles ofoutput redirection, or it can return the
output of the other program(s)as the return value of the exec call.

open |program ?access?

Returns a file descriptor for the pipe. The program argument must start with
the pipe symbol. If program is enclosed in quotes or braces, it can include
arguments to the subprocess.

exec ?switches? arg1 ?arg2? ... ?argN?

exec treats its arguments as the names and arguments for a set of programs to
run. If the first args start with a "-", then they are treated as switches to the
exec command, instead of being invoked as subprocesses or subprocess options.
switches are:

• -keepnewline retains a trailing newline in the pipeline’s output. Normally
a trailing newline will be deleted.

• -- marks the end of the switches. The next string will be treated as arg1,
even if it starts with a ”‘-‘”

The arguments to the exec command, arg1 ... argN can be one of:

• the name of a program to execute

• a command line argument for the subprocess

• an I/O redirection instruction.

• an instruction to put the new program in the background:

exec myprog &

will start the program myprog in the background, and return immediately.
There is no connection between that program and the Tcl script, both can run
on independently. The & must be the last argument - you can use all other types
of arguments in front of it.

[NOTE: Add information on how to wait for the program to finish?]
There are many I/O redirection commands. The main subset of these com-

mands is: |

Pipes the standard output of the command preceding the pipe symbol into the
standard input of the command following the pipe symbol.

< filename

The first program in the pipe will read input from filename.

<\ fileID

The first program in the pipe will read input from the Tcl descriptor fileID.
fileID is the value returned from an open ... "r" command.

74 CHAPTER 4. INPUT AND OUTPUT

<< value

The first program in the pipe will read value as its input.

> filename

The output of the last program in the pipe will be sent to filename. Any
previous contents of filename will be lost.

>> filename

The output of the last program in the pipe will be appended to filename.

2> filename

The standard error from all the programs in the pipe will be sent to filename.
Any previous contents of filename will be lost.

2>> filename

The standard error from all the programs in the pipe will be appended to
filename.

>\ fileID

The output from the last program in the pipe will be written to fileID. fileID
is the value returned from an open ... "w" command.

If you are familiar with shell programming, there are a few differences to be
aware of when you are writing Tcl scripts that use the exec and open calls.

• You don’t need the quotes that you would put around arguments to escape
them from the shell expanding them. In the example, the argument to the
sed command is not put in quotes. If it were put in quotes, the quotes
would be passed to sed, instead of being stripped off (as theshell does),
and sed would report an error.

• If you use the open |cmd "r+" construct, you must follow each puts with
a flush to force Tcl to send the command from its buffer to the pro-
gram. The output from the program itself may be buffered in its output
buffer. You can sometimes force the output from the external program to
flush by sending an exit command to the process. You can also use the
fconfigure command to make a connection (channel) unbuffered.

• This will fail - there is most probably no file with the literal name ”*.tcl”:

exec ls *.tcl

• To pass a list of files, based on such a pattern use the {*} prefix, it forces
the list to become individual arguments:

exec ls {*}[glob *.tcl]

• If one of the commands in an exec call fails to execute, the exec will return
an error, and the error output will include the last line describing the error.
The exec treats any output to standard error to be an indication that the

4.3. RUNNING OTHER PROGRAMS FROM TCL - EXEC, OPEN 75

external program failed. This is simply a conservative assumption: many
programs behave that way and they are sloppy in setting return codes.
Some programs however write to standard error without intending this as
an indication of an error. You can guard against this from upsetting your
script by using the catchcommand:

if { [catch { exec ls *.tcl } msg] } {

puts "Something seems to have gone wrong but we will ignore it"

}

As already mentioned, the Expect extension to Tcl provides a very powerful
interface to other programs, which in particular handles the buffering problem.
NOTE: add good reference to expect.

If one of the commands in an open |cmd fails, the open does not return
an error. However, attempting to read input from the file descriptor with
gets \$file will return an empty string. Using the gets \$file input con-
struct will return a character count of -1.

To inspect the return code from a program and the possible reason for failure,
you can use the global errorInfo variable:

if { [catch { exec ls *.tcl } msg] } {

puts "Something seems to have gone wrong:"

puts "Information about it: $::errorInfo"

}

Example

#

Write a Tcl script to get a platform-independent program:

#

Create a unique (mostly) file name for a Tcl program

set TMPDIR "."

if { [info exists ::env(TMP)] } {

set TMPDIR $::env(TMP)

}

set tempFileName [file join $TMPDIR invert_[pid].tcl]

Open the output file, and # write the program to it

set outfl [open $tempFileName w]

puts $outfl {

set len [gets stdin line]

if {$len < 5} {exit -1}

for {set i [expr {$len-1}]} {$i >= 0} {incr i -1} {

append invertedLine [string range $line $i $i]

}

puts $invertedLine

exit 0

}

76 CHAPTER 4. INPUT AND OUTPUT

Close the file

close $outfl

#

Run the new Tcl script:

#

Open a pipe to the program (for both reading and writing: r+)

#

set io [open "|[info nameofexecutable] $tempFileName" r+]

#

Send a string to the new program

MUST FLUSH

puts $io "This will come back backwards."

flush $io

Get the reply, and display it.

set len [gets $io line]

puts "To invert: ’This will come back backwards.’"

puts "Inverted is: $line"

puts "The line is $len characters long"

Run the program with input defined in an exec call

set invert [exec [info nameofexecutable] $tempFileName << \

"ABLE WAS I ERE I SAW ELBA"]

Display the results

puts "The inversion of ’ABLE WAS I ERE I SAW ELBA’ is \n $invert"

Clean up

file delete $tempFileName

Result:

To invert: ’This will come back backwards.’

Inverted is: .sdrawkcab kcab emoc lliw sihT

The line is 30 characters long

The inversion of ’ABLE WAS I ERE I SAW ELBA’ is

ABLE WAS I ERE I SAW ELBA

4.4 Communicating with other programs - socket,
fileevent

TODO: lesson on socket and fileevent (or ”chan event” in 8.5). But see also
Lesson 40: socket, fileevent, vwait (Section 7.9)

4.4. COMMUNICATINGWITHOTHER PROGRAMS - SOCKET, FILEEVENT77

Example

#

A little echo server

#

proc accept {socket address port} {

puts "Accepted connection $socket from $address\:$port"

Copy input from the socket directly back to the socket

chan copy $socket $socket -command [list finish $socket]

}

proc finish {socket args} {

puts "Closed $socket"

catch { chan close $socket }

}

socket -server accept 8080

Start the event loop by waiting on a non-existant variable ’forever’

vwait forever

78 CHAPTER 4. INPUT AND OUTPUT

Chapter 5

Input and Output

5.1 Learning the existence of commands and vari-
ables - info

Tcl provides a number of commands for introspection - commands that tell what
is going on in your program, what the implementation is of your procedures,
which variables have been set and so on.

The info command allows a Tcl program to obtain information from the Tcl
interpreter. The next three lessons cover aspects of the info command. (Other
commands allowing introspection involve: traces, namespaces, commands sched-
uled for later execution via the after command and so on.)

This lesson covers the info subcommands that return information about
which procs, variables, or commands are currently in existence in this instance
of the interpreter. By using these subcommands you can determine if a variable
or proc exists before you try to access it.

The code below shows how to use the info exists command to make an
incr command that throws a no such variable error, since it checks to be certain
that the variable exists before incrementing it (the core command initialises the
variable to zero instead):

proc nitpickyIncr {val {amount 1}} {

upvar $val v

if { [info exists v] } {

incr v $amount

} else {

return -code error "Variable $val does not exist!"

}

}

Info commands that return lists of visible commands and
variables.

Almost all the info subcommands take a pattern that follow the string match

rules. If pattern is not provided, a list of all items is returned (as if the pattern
was ”*”).

79

80 CHAPTER 5. INPUT AND OUTPUT

info commands ?pattern?

Returns a list of the commands, both internal commands and procedures, whose
names match pattern.

info exists varName

Returns 1 if varName exists as a variable (or an array element) in the current
context, otherwise returns 0.

info functions ?pattern?

Returns a list of the mathematical functions available via the expr command
that match pattern.

info globals ?pattern?

Returns a list of the global variables that match pattern.

info locals ?pattern?

Returns a list of the local variables that match pattern.

info procs ?pattern?

Returns a list of the Tcl procedures that match pattern.

info vars ?pattern?

eturns a list of the local and global variables that match pattern.

Example

#

Use the catch command to prevent the program from ending prematurely

#

if {[info procs nitpickyIncr] eq "nitpickyIncr"} {

catch {

nitpickyIncr a

} msg

}

puts "After calling nitpickyIncr with a non existent variable: $msg"

set a 100

nitpickyIncr a

puts "After calling nitpickyIncr with a variable with a value of 100: $a"

catch {

nitpickyIncr b -3

} msg

puts "After calling nitpickyIncr with a non existent variable by -3: $msg"

set b 100

nitpickyIncr b -3

puts "After calling nitpickyIncr with a variable whose value is 100 by -3: $b"

5.1. LEARNING THE EXISTENCE OF COMMANDS ANDVARIABLES - INFO81

puts "\nThese variables have been defined: [lsort [info vars]]"

puts "\nThese globals have been defined: [lsort [info globals]]"

set exist [info procs localproc]

if {$exist == ""} {

puts "\nlocalproc does not exist at point 1"

}

proc localproc {} {

global argv

set loc1 1

set loc2 2

puts "\nLocal variables accessible in this proc are: [lsort [info locals]]"

puts "\nVariables accessible from this proc are: [lsort [info vars]]"

puts "\nGlobal variables visible from this proc are: [lsort [info globals]]"

}

set exist [info procs localproc]

if {$exist != ""} {

puts "localproc does exist at point 2"

}

localproc

Result:

(Note: Some lines have been abbreviated to make them fit.)

After calling nitpickyIncr with a non existent variable: Variable a does not exist!

After calling nitpickyIncr with a variable with a value of 100: 101

After calling nitpickyIncr with a non existent variable by -3: Variable b does not exist!

After calling nitpickyIncr with a variable whose value is 100 by -3: 97

These variables have been defined: a argc argv argv0 auto_path b env errorCode ...

These globals have been defined: a argc argv argv0 auto_path b env errorCode ...

localproc does not exist at point 1

localproc does exist at point 2

Local variables accessible in this proc are: loc1 loc2

Variables accessible from this proc are: argv loc1 loc2

Global variables visible from this proc are: a argc argv argv0 auto_path b env errorCode ...

82 CHAPTER 5. INPUT AND OUTPUT

5.2 State of the interpreter - info

There are a number of subcommands to the info command that provide in-
formation about the current state of the interpreter. These commands provide
access to information like the current version and patchlevel, what script is cur-
rently being executed, how many commands have been executed, or how far
down in the call tree the current proc is executing. The info tclversion and
info patchlevel can be used to find out if the revision level of the interpreter
running your code has the support for features you are using. If you know that
certain features are not available in certain revisions of the interpreter, you can
define your own procs to handle this, or just exit the program with an error
message.

The info cmdcount and info level can be used while optimizing a Tcl
script to find out how many levels and commands were necessary to accomplish
a function.

Note that the pid command is not part of the info command, but a com-
mand in its own right.

Subcommands that return information about the current
state of the interpreter

(Note: There are several other subcommands that can be useful at times)

info cmdcount

Returns the total number of commands that have been executed by this inter-
preter.

info level ?number?

Returns the stack level at which the compiler is currently evaluating code. 0 is
the top level, 1 is a proc called from top, 2 is a proc called from a proc, etc. If
number is a positive value, info level returns a the name and arguments of
the proc at that level on the stack. number is that same value that info level

would return if it were called in the proc being referenced. If number number is
a negative value, it refers to the current level plus number. Thus, info level

returns a the name and arguments of the proc at that level on the stack.

info patchlevel

Returns the value of the global variable tclpatchlevel.Thisisathree−levelsversionnumberidentifyingtheTclversion, like :
”8.6.6”

info script

Returns the name of the file currently being evaluated, if one is being evaluated.
If there is no file being evaluated, returns an empty string. This can be used
for instance to determine the directory holding other scripts or files of interest
(they often live in the same directory or in a related directory), without having
to hardcode the paths.

info tclversion

Returns the value of the global variable tclversion.Thisistherevisionnumberofthisinterpreter, like :
”8.6”.

5.2. STATE OF THE INTERPRETER - INFO 83

pid

Returns the process id of the current process.

Example

puts "This is how many commands have been executed: [info cmdcount]"

puts "Now *THIS* many commands have been executed: [info cmdcount]"

puts "\nThis interpreter is revision level: [info tclversion]"

puts "This interpreter is at patch level: [info patchlevel]"

puts "The process id for this program is [pid]"

proc factorial {val} {

puts "Current level: [info level] - val: $val"

set lvl [info level]

if {$lvl == $val} {

return $val

}

return [expr {($val-$lvl) * [factorial $val]}]

}

set count1 [info cmdcount]

set fact [factorial 3]

set count2 [info cmdcount]

puts "The factorial of 3 is $fact"

puts "Before calling the factorial proc, $count1 commands had been executed"

puts "After calling the factorial proc, $count2 commands had been executed"

puts "It took [expr $count2-$count1] commands to calculate this factorial"

Result:

This is how many commands have been executed: 147

Now *THIS* many commands have been executed: 150

This interpreter is revision level: 8.6

This interpreter is at patch level: 8.6.6

The process id for this program is 10816

Current level: 1 - val: 3

Current level: 2 - val: 3

Current level: 3 - val: 3

The factorial of 3 is 6

Before calling the factorial proc, 162 commands had been executed

After calling the factorial proc, 189 commands had been executed

It took 27 commands to calculate this factorial

The info script command is useful to construct the names of related script
files:

#

Use [info script] to determine where the other files of interest

84 CHAPTER 5. INPUT AND OUTPUT

reside

#

set sysdir [file dirname [info script]]

source [file join $sysdir "utils.tcl"]

5.3 Information about procs - info

The info command includes a set of subcommands that will provide all the info
you could want about a proc. These subcommands will return the body of a
proc, the arguments to the proc, and the value of any default arguments.

These subcommands can be used to:

• Access the contents of a proc in a debugger.

• Generate custom procs from a template.

• Report default values while prompting for input.

Info commands that return information about a proc

info args procname

Returns a list of the names of the arguments to the procedure procname.

info body procname

Returns the body of the procedure procname.

info default procname arg varName

Returns 1 if the argument arg in procedure procName has a default, and sets
varName to that default. Otherwise, returns 0.

Example

proc demo {argument1 {default "DefaultValue"} } {

puts "This is a demo proc. It is being called with $argument1 and $default"

#

We can use [info level] to find out if a value was given for

the optional argument "default" ...

#

puts "Actual call: [info level [info level]]"

}

puts "The args for demo are: [info args demo]\n"

puts "The body for demo is: [info body demo]\n"

set arglist [info args demo]

foreach arg $arglist {

if { [info default demo $arg defaultval] } {

5.3. INFORMATION ABOUT PROCS - INFO 85

puts "$arg has a default value of $defaultval"

} else {

puts "$arg has no default"

}

}

Result:

The args for demo are: argument1 default

The body for demo is:

puts "This is a demo proc. It is being called with $argument1 and $default"

#

We can use [info level] to find out if a value was given for

the optional argument "default" ...

#

puts "Actual call: [info level [info level]]"

argument1 has no default

default has a default value of DefaultValue

86 CHAPTER 5. INPUT AND OUTPUT

Chapter 6

Modularization - source

6.1 Modularization - source

The source command will load a file and execute it. This allows a program to
be broken up into multiple files, with each file defining procedures and variables
for a particular area of functionality. For instance, you might have a file called
database.tcl that contains all the procedures for dealing with a database, or
a file called gui.tcl that handles creating a graphical user interface with Tk.
The main script can then simply include each file using the source command.
More powerful techniques for program modularization are discussed in the next
lesson on packages.

This command can be used to:

• separate a program into multiple files.

• make a library file that contains all the procs for a particular set of func-
tions.

• configure programs.

• load data files.

source fileName

Reads the script in fileName and executes it.

• If the script executes successfully, source returns the value of the last
statement in the script.

• If there is an error in the script, source will return that error.

• If there is a return (other than within a proc definition) then source will
return immediately, without executing the remainder of the script.

• If fileName starts with a tilde () then \$env(HOME) will be substituted
for the tilde, as is done in the file command.

87

88 CHAPTER 6. MODULARIZATION - SOURCE

Example

sourcedata.tcl:

Example data file to be sourced

set scr [info script]

proc testproc {} {

global scr

puts "testproc source file: $scr"

}

set abc 1

return

set aaaa 1

sourcemain.tcl:

set filename "sourcedata.tcl"

puts "Global variables visible before sourcing $filename:"

puts "[lsort [info globals]]\n"

if {[info procs testproc] eq ""} {

puts "testproc does not exist. sourcing $filename"

source $filename

}

puts "\nNow executing testproc"

testproc

puts "Global variables visible after sourcing $filename:"

puts "[lsort [info globals]]\n"

Result: (slightly edited to make the long list fit)

Global variables visible before sourcing sourcedata.tcl:

argc argv argv0 auto_path env errorCode errorInfo filename tcl_interactive

tcl_library tcl_patchLevel tcl_platform tcl_rcFileName tcl_version

testproc does not exist. sourcing sourcedata.tcl

Now executing testproc

testproc source file: sourcedata.tcl

Global variables visible after sourcing sourcedata.tcl:

abc argc argv argv0 auto_path env errorCode errorInfo filename scr

tcl_interactive tcl_library tcl_patchLevel tcl_platform tcl_rcFileName tcl_version

6.2 Building reusable libraries - packages and
namespaces

The previous lesson showed how the source command can be used to separate a
program into multiple files, each responsible for a different area of functionality.

6.2. BUILDING REUSABLE LIBRARIES - PACKAGES ANDNAMESPACES89

This is a simple and useful technique for achieving modularity. However, there
are a number of drawbacks to using the source command directly. Tcl provides
a more powerful mechanism for handling reusable units of code called packages.
A package is simply a bundle of files implementing some functionality, along with
a name that identifies the package, and a version number that allows multiple
versions of the same package to be present. A package can be a collection of
Tcl scripts, or a binary library, or a combination of both.

Using packages

The package command provides the ability to use a package, compare package
versions, and to register your own packages with an interpreter. A package
is loaded by using the package require command and providing the package
name and optionally a version number. The first time a script requires a
package Tcl builds up a database of available packages and versions. It does
this by searching for package index files in all of the directories listed in the
tcl_pkgPath and auto_path global variables, as well as any subdirectories of
those directories. Each package provides a file called pkgIndex.tcl that tells
Tcl the names and versions of any packages in that directory, and how to load
them if they are needed.

It is good style to start every script you create with a set of package require

statements to load any packages required. This serves two purposes: making
sure that any missing requirements are identified as soon as possible; and, clearly
documenting the dependencies that your code has. Tcl and Tk are both made
available as packages and it is a good idea to explicitly require them in your
scripts even if they are already loaded as this makes your scripts more portable
and documents the version requirements of your script.

Creating a package

There are three steps involved in creating a package:

• Adding a package provide statement to your script.

• Creating a pkgIndex.tcl file (note the capital-I, this is essential for OSes
like Linux)

• Installing the package where it can be found by Tcl.

The first step is to add a package provide statement to your script. It is
good style to place this statement at the top of your script. The package provide

command tells Tcl the name of your package and the version being provided.
The next step is to create a pkgIndex.tcl file. This file tells Tcl how to load

your package. In essence the index file is simply a Tcl file which is loaded into the
interpreter when Tcl searches for packages. It should use the package ifneeded

command register a script which will load the package when it is required. The
pkgIndex.tcl file is evaluated globally in the interpreter when Tcl first searches
for any package. For this reason it is very bad style for an index script to do
anything other than tell Tcl how to load a package; index scripts should not
define procs, require packages, or perform any other action which may affect
the state of the interpreter.

90 CHAPTER 6. MODULARIZATION - SOURCE

The simplest way to create a pkgIndex.tcl script is to use the pkg_mkIndex
command. The pkg_mkIndex command scans files which match a given pattern

in a directory looking for package provide commands. From this information
it generates an appropriate pkgIndex.tcl file in the directory.

Once a package index has been created, the next step is to move the package
to somewhere that Tcl can find it. The tcl_pkgPath and auto_path global
variables contain a list of directories that Tcl searches for packages. The package
index and all the files that implement the package should be installed into a
subdirectory of one of these directories. Alternatively, the auto_path variable
can be extended at run-time to tell Tcl of new places to look for packages.

package require ?-exact? name ?version?

Loads the package identified by name. If the -exact switch is given along with
a version number then only that exact package version will be accepted. If
a version number is given, without the -exact switch then any version equal
to or greater than that version (but with the same major version number) will
be accepted. If no version is specified then the highest available version will be
loaded. If a matching package can be found then it is loaded and the command
returns the actual version number; otherwise it generates an error.

package provide name ?version?

If a version is given this command tells Tcl that this version of the package
indicated by name is loaded. If a different version of the same package has already
been loaded then an error is generated. If the version argument is omitted,
then the command returns the version number that is currently loaded, or the
empty string if the package has not been loaded.

pkg_mkIndex ?-direct? ?-lazy? ?-load pkgPat? ?-verbose? dir ?pattern pattern ...?

Creates a pkgIndex.tcl file for a package or set of packages. The command
works by loading the files matching the patterns in the directory, dir and see-
ing what new packages and commands appear. The command is able to handle
both Tcl script files and binary libraries.

Namespaces

One problem that can occur when using packages, and particularly when using
code written by others is that of name collision. This happens when two pieces of
code try to define a procedure or variable with the same name. In Tcl when this
occurs the old procedure or variable is simply overwritten. This is sometimes
a useful feature, but more often it is the cause of bugs if the two definitions
are not compatible. To solve this problem, Tcl provides a namespace command
to allow commands and variables to be partitioned into separate areas, called
namespaces. Each namespace can contain commands and variables which are
local to that namespace and cannot be overwritten by commands or variables
in other namespaces. When a command in a namespace is invoked it can see
all the other commands and variables in its namespace, as well as those in
the global namespace. Namespaces can also contain other namespaces. This
allows a hierarchy of namespaces to be created in a similar way to a file system
hierarchy, or the Tk widget hierarchy. Each namespace itself has a name which
is visible in its parent namespace. Items in a namespace can be accessed by

6.2. BUILDING REUSABLE LIBRARIES - PACKAGES ANDNAMESPACES91

creating a path to the item. This is done by joining the names of the items
with ::. For instance, to access the variable bar in the namespace foo, you
could use the path foo::bar. This kind of path is called a relative path because
Tcl will try to follow the path relative to the current namespace. If that fails,
and the path represents a command, then Tcl will also look relative to the
global namespace. You can make a path fully-qualified by describing its exact
position in the hierachy from the global namespace, which is named ::. For
instance, if our foo namespace was a child of the global namespace, then the
fully-qualified name of bar would be ::foo::bar. It is usually a good idea
to use fully-qualified names when referring to any item outside of the current
namespace to avoid surprises.

A namespace can export some or all of the command names it contains.
These commands can then be imported into another namespace. This in effect
creates a local command in the new namespace which when invoked calls the
original command in the original namespace. This is a useful technique for
creating short-cuts to frequently used commands from other namespaces. In
general, a namespace should be careful about exporting commands with the
same name as any built-in Tcl command or with a commonly used name.

Some of the most important commands to use when dealing with namespaces
are:

namespace eval path script

This command evaluates the script in the namespace specified by path. If
the namespace doesn’t exist then it is created. The namespace becomes the
current namespace while the script is executing, and any unqualified names will
be resolved relative to that namespace. Returns the result of the last command
in script.

namespace delete ?namespace namespace ...?

Deletes each namespace specified, along with all variables, commands and child
namespaces it contains.

namespace current

Returns the fully qualified path of the current namespace.

namespace export ?-clear? ?pattern pattern ...?

Adds any commands matching one of the patterns to the list of commands
exported by the current namespace. If the -clear switch is given then the
export list is cleared before adding any new commands. If no arguments are
given, returns the currently exported command names. Each pattern is a glob-
style pattern such as *, [a-z]*, or *foo*.

namespace import ?-force? ?pattern pattern ...?

Imports all commands matching any of the patterns into the current namespace.
Each pattern is a glob-style pattern such as foo::*, or foo::bar.

Using namespace with packages

William Duquette has an excellent guide to using namespaces and packages at
[”http://www.wjduquette.com/tcl/namespaces.html”¿http://www.wjduquette.com/tcl/namespaces.html].

92 CHAPTER 6. MODULARIZATION - SOURCE

In general, a package should provide a namespace as a child of the global names-
pace and put all of its commands and variables inside that namespace. A pack-
age shouldn’t put commands or variables into the global namespace by default.
It is also good style to give your package and the namespace it provides the
same name, to avoid confusion.

Example

Register the package

package provide tutstack 1.0

package require Tcl 8.5

Create the namespace

namespace eval ::tutstack {

Export commands

namespace export create destroy push pop peek empty

Set up state

variable stack

variable id 0

}

Create a new stack

proc ::tutstack::create {} {

variable stack

variable id

set token "stack[incr id]"

set stack($token) [list]

return $token

}

Destroy a stack

proc ::tutstack::destroy {token} {

variable stack

unset stack($token)

}

Push an element onto a stack

proc ::tutstack::push {token elem} {

variable stack

lappend stack($token) $elem

}

Check if stack is empty

proc ::tutstack::empty {token} {

variable stack

6.2. BUILDING REUSABLE LIBRARIES - PACKAGES ANDNAMESPACES93

set num [llength $stack($token)]

return [expr {$num == 0}]

}

See what is on top of the stack without removing it

proc ::tutstack::peek {token} {

variable stack

if {[empty $token]} {

error "stack empty"

}

return [lindex $stack($token) end]

}

Remove an element from the top of the stack

proc ::tutstack::pop {token} {

variable stack

set ret [peek $token]

set stack($token) [lrange $stack($token) 0 end-1]

return $ret

}

This example creates a package which provides a stack data structure.

package require tutstack 1.0

set stack [tutstack::create]

foreach num {1 2 3 4 5} { tutstack::push $stack $num }

while { ![tutstack::empty $stack] } {

puts "[tutstack::pop $stack]"

}

tutstack::destroy $stack

And some code which uses it:

package require tutstack 1.0

package require Tcl 8.5

namespace eval ::tutstack {

Create the ensemble command

namespace ensemble create

}

Now we can use our stack through the ensemble command

set stack [tutstack create]

foreach num {1 2 3 4 5} { tutstack push $stack $num }

94 CHAPTER 6. MODULARIZATION - SOURCE

while { ![tutstack empty $stack] } {

puts "[tutstack pop $stack]"

}

tutstack destroy $stack

Ensembles

A common way of structuring related commands is to group them together
into a single command with sub-commands. This type of command is called
an ensemble command, and there are many examples in the Tcl standard li-
brary. For instance, the string command is an ensemble whose sub-commands
are length, index, match etc. Tcl 8.5 introduced a handy way of convert-
ing a namespace into an ensemble with the namespace ensemble command.
This command is very flexible, with many options to specify exactly how sub-
commands are mapped to commands within the namespace. The most basic
usage is very straightforward, however, and simply creates an ensemble com-
mand with the same name as the namespace and with all exported procedures
registered as sub-commands. To illustrate this, we will convert our stack data
structure into an ensemble:

package require tutstack 1.0

package require Tcl 8.5

namespace eval ::tutstack {

Create the ensemble command

namespace ensemble create

}

Now we can use our stack through the ensemble command

set stack [tutstack create]

foreach num {1 2 3 4 5} { tutstack push $stack $num }

while { ![tutstack empty $stack] } {

puts "[tutstack pop $stack]"

}

tutstack destroy $stack

As well as providing a nicer syntax for accessing functionality in a names-
pace, ensemble commands also help to clearly distinguish the public interface
of a package from the private implementation details, as only exported com-
mands will be registered as sub-commands and the ensemble will enforce this
distinction. Readers who are familiar with object-oriented programming (OOP)
will realise that the namespace and ensemble mechanisms provide many of the
same encapsulation advantages. Indeed, in the past many OO extensions for Tcl
built on top of the powerful namespace mechanism. The official object-oriented
features in TclOO do something very similar.

Chapter 7

Further topics

7.1 Creating Commands - eval

One difference between Tcl and most other compilers is that Tcl will allow an
executing program to create new commands and execute them while running.

A tcl command is defined as a list of strings in which the first string is a
command or proc. Any string or list which meets this criteria can be evaluated
and executed.

The eval command will evaluate a list of strings as though they were com-
mands typed at the \% prompt or sourced from a file. The eval command
normally returns the final value of the commands being evaluated. If the com-
mands being evaluated throw an error (for example, if there is a syntax error in
one of the strings), then eval will throw an error.

Note that either concat or list may be used to create the command string,
but that these two commands will create slightly different command strings.

eval arg1 ?arg2? ... ?argn?

Evaluates arg1 - argn as one or more Tcl commands. The args are concatenated
into a string, and evaluated as a Tcl script. eval returns the result (or error
code) of that evaluation.

Example

set cmd {puts "Evaluating a puts"}

puts "CMD IS: $cmd"

eval $cmd

if {[string match [info procs newProcA] ""] } {

puts "\nDefining newProcA for this invocation"

set num 0;

set cmd "proc newProcA "

set cmd [concat $cmd "{} {\n"]

set cmd [concat $cmd "global num;\n"]

set cmd [concat $cmd "incr num;\n"]

set cmd [concat $cmd " return \"/tmp/TMP.[pid].\$num\";\n"]

95

96 CHAPTER 7. FURTHER TOPICS

set cmd [concat $cmd "}"]

eval $cmd

}

puts "\nThe body of newProcA is: \n[info body newProcA]\n"

puts "newProcA returns: [newProcA]"

puts "newProcA returns: [newProcA]"

#

Define a proc using lists

#

if {[string match [info procs newProcB] ""] } {

puts "\nDefining newProcB for this invocation"

set cmd "proc newProcB "

lappend cmd {}

lappend cmd {global num; incr num; return $num;}

eval $cmd

}

puts "\nThe body of newProcB is: \n[info body newProcB]\n"

puts "newProcB returns: [newProcB]"

Result:

CMD IS: puts "Evaluating a puts"

Evaluating a puts

Defining newProcA for this invocation

The body of newProcA is:

global num; incr num; return "/tmp/TMP.10312.$num";

newProcA returns: /tmp/TMP.10312.1

newProcA returns: /tmp/TMP.10312.2

Defining newProcB for this invocation

The body of newProcB is:

global num; incr num; return $num;

newProcB returns: 3

7.2 More command construction - format, list

There may be some unexpected results when you try to compose command
strings for eval.

7.2. MORE COMMAND CONSTRUCTION - FORMAT, LIST 97

For instance:

eval puts OK

would print the string OK. However,

eval puts Not OK

will generate an error.
The reason that the second command generates an error is that the eval

uses concat to merge its arguments into a command string. This causes the
two words Not OK to be treated as two arguments to puts. If there is more than
one argument to puts, the first argument must be a file pointer.

Correct ways to write the second command include these:

eval [list puts {Not OK}]

eval [list puts "Not OK"]

set cmd "puts" ; lappend cmd {Not OK}; eval $cmd

As long as you keep track of how the arguments you present to eval will be
grouped, you can use many methods of creating the strings for eval, including
the string commands and format.

The recommended methods of constructing commands for eval is to use
the list and lappend commands. These commands become difficult to use,
however if you need to put braces in the command, as was done in the previous
lesson.

The example from the previous lesson is re-implemented in the example code
using lappend.

The completeness of a command can be checked with info complete. Info complete

can also be used in an interactive program to determine if the line being typed
in is a complete command, or the user just entered a newline to format the
command better.

info complete string \rm \\If string has no unmatched brackets, braces
or parentheses, then a value of 1 is returned, else 0 is returned.

Example

Example, part 1 (will produce an error):

set cmd "OK"

eval puts $cmd

set cmd "puts" ; lappend cmd {Also OK}; eval $cmd

set cmd "NOT OK"

eval puts $cmd

Result:

OK

Also OK

can not find channel named "NOT"

98 CHAPTER 7. FURTHER TOPICS

while executing

"puts NOT OK"

("eval" body line 1)

invoked from within

"eval puts $cmd"

(file "xx.tcl" line 7)

Example, part 2:

eval [format {%s "%s"} puts "Even This Works"]

set cmd "And even this can be made to work"

eval [format {%s "%s"} puts $cmd]

set tmpFileNum 0;

set cmd {proc tempFileName }

lappend cmd ""

lappend cmd "global num; incr num; return \"/tmp/TMP.[pid].\$num\""

eval $cmd

puts "\nThis is the body of the proc definition:"

puts "[info body tempFileName]\n"

set cmd {puts "This is Cool!}

if {[info complete $cmd]} {

eval $cmd

} else {

puts "INCOMPLETE COMMAND: $cmd"

}

Result:

Even This Works

And even this can be made to work

This is the body of the proc definition:

global num; incr num; return "/tmp/TMP.17520.$num"

INCOMPLETE COMMAND: puts "This is Cool!

7.3 Substitution without evaluation - format, subst

The Tcl interpreter does only one substitution pass during command
evaluation. Some situations, such as placing the name of a variable
in a variable, require two passes through the substitution phase. In
this case, the subst command is useful.

7.3. SUBSTITUTION WITHOUT EVALUATION - FORMAT, SUBST 99

Subst performs a substitution pass without performing any execu-
tion of commands except those required for the substitution to occur,
ie: commands within [] will be executed, and the results placed in
the return string.

The example code:

puts "[subst $$c]\n"

shows an example of placing a variable name in a variable, and eval-
uating through the indirection.

The format command can also be used to force some levels of sub-
stitution to occur.

subst ?-nobackslashes? ?-nocommands? ?-novariables? string

Passes string through the Tcl substitution phase, and returns the original
string with the backslash sequences, commands and variables replaced by their
equivalents. If any of the -no... arguments are present, then that set of sub-
stitutions will not be done. Note: subst does not honor braces or quotes.

Example

set a "alpha"

set b a

puts {a and b with no substitution: $a $$b}

puts "a and b with one pass of substitution: $a $$b"

puts "a and b with subst in braces: [subst {$a $$b}]"

puts "a and b with subst in quotes: [subst "$a $$b"]\n"

puts "format with no subst [format {$%s} $b]"

puts "format with subst: [subst [format {$%s} $b]]"

eval "puts \"eval after format: [format {$%s} $b]\""

set num 0;

set cmd "proc tempFileName {} "

set cmd [format "%s {global num; incr num;" $cmd]

set cmd [format {%s return "/tmp/TMP.%s.$num"} $cmd [pid]]

set cmd [format "%s }" $cmd]

eval $cmd

puts "[info body tempFileName]"

set a arrayname

set b index

set c newvalue

eval [format "set %s(%s) %s" $a $b $c]

puts "Index: $b of $a was set to: $arrayname(index)"

Result:

100 CHAPTER 7. FURTHER TOPICS

a and b with no substitution: $a $$b

a and b with one pass of substitution: alpha $a

a and b with subst in braces: alpha $a

a and b with subst in quotes: alpha alpha

format with no subst $a

format with subst: alpha

eval after format: alpha

global num; incr num; return "/tmp/TMP.11168.$num"

Index: index of arrayname was set to: newvalue

7.4 Changing Working Directory - cd, pwd

Tcl also supports commands to change and display the current working direc-
tory.

These are:

cd ?dirName?

Changes the current directory to dirName (if dirName is given, or to the \$HOME
directory if dirName is not given. If dirName is a tilde (~), cd changes the
working directory to the user’s home directory. If dirName starts with a tilde,
then the rest of the characters are treated as a login ID, and cd changes the
working directory to that user’s $HOME.

pwd

Returns the current directory.

Example

set dirs [list TEMPDIR]

puts "[format "%-15s %-20s " "FILE" "DIRECTORY"]"

foreach dir $dirs {

catch {cd $dir}

set c_files [glob -nocomplain c*]

foreach name $c_files {

puts "[format "%-15s %-20s " $name [pwd]]"

}

}

7.5. DEBUGGING AND ERRORS - ERRORINFO ERRORCODE CATCH ERRORRETURN101

7.5 Debugging and Errors - errorInfo errorCode
catch error return

In previous lessons we discussed how the return command could be used to
return a value from a proc. In Tcl, a proc may return a value, but it always
returns a status.

When a Tcl command or procedure encounters an error during its execution,
the global variable errorInfo is set, and an error condition is generated. If you
have proc a that called proc b that called c that called d , if d generates an error,
the ”call stack” will unwind. Since d generates an error, c will not complete
execution cleanly, and will have to pass the error up to b , and in turn on to a.
Each procedure adds some information about the problem to the report. For
instance:

proc a {} {

b

}

proc b {} {

c

}

proc c {} {

d

}

proc d {} {

some_command

}

Run the top-level proc

a

This produces the following output:

invalid command name "some_command"

while executing

"some_command"

(procedure "d" line 2)

invoked from within

"d"

(procedure "c" line 2)

invoked from within

"c"

(procedure "b" line 2)

invoked from within

"b"

(procedure "a" line 2)

invoked from within

"a"

(file "errors.tcl" line 16)

This actually occurs when any exception condition occurs, including break

and continue. The break and continue commands normally occur within a

102 CHAPTER 7. FURTHER TOPICS

loop of some sort, and the loop command catches the exception and processes
it properly, meaning that it either stops executing the loop, or continues on to
the next instance of the loop without executing the rest of the loop body.

It is possible to ”catch” errors and exceptions with the catch command,
which runs some code, and catches any errors that code happens to generate.
The programmer can then decide what to do about those errors and act accord-
ingly, instead of having the whole application come to a halt. A more flexible
facility is the try command - see below.

For example, if an open call returns an error, the user could be prompted to
provide another file name.

A Tcl proc can also generate an error status condition. This can be done by
specifying an error return with an option to the return command, or by using
the error command. In either case, a message will be placed in errorInfo,
and the proc will generate an error.

error message ?info? ?code?

Generates an error condition and forces the Tcl call stack to unwind, with error
information being added at each step. If info or code are provided, the errorInfo
and errorCode variables are initialized with these values.

catch script ?varName?

Evaluates and executes script. The return value of catch is the status return
of the Tcl interpreter after it executes script If there are no errors in script,
this value is 0. Otherwise it is 1. If varName is supplied, the value returned by
script is placed in varName if the script successfully executes. If not, the error
is placed in varName.

return ?-code code? ?-errorinfo info? ?-errorcode errorcode? ?value?

Generates a return exception condition. The possible arguments are: errorInfo

Code Description
-code code The next value specifies the return status.

‘code‘ must be one of the following words:
‘ok‘ - Normal status return
‘error‘ - Proc returns error status
‘return‘ - Normal return
‘break‘ - Proc returns break status
‘continue‘ - Proc returns continue status
These allow you to write procedures that behave
like the built in commands break, error, and continue.

-errorinfo info ‘info‘ will be the first string in the errorInfo variable.
-errorcode errorcode The proc will set errorCode to errorcode.
value The string value will be the value returned by this proc.

errorInfo is a global variable that contains the error information from com-
mands that have failed.

errorCode

errorCode is a global variable that contains the error code from command that

7.5. DEBUGGING AND ERRORS - ERRORINFO ERRORCODE CATCH ERRORRETURN103

failed. This is meant to be in a format that is easy to parse with a script, so
that Tcl scripts can examine the contents of this variable, and decide what to
do accordingly.

Example

proc errorproc {x} {

if {$x > 0} {

error "Error generated by error" "Info String for error" $x

}

}

catch errorproc

puts "after bad proc call: ErrorCode: $errorCode"

puts "ERRORINFO:\n$errorInfo\n"

set errorInfo "";

catch {errorproc 0}

puts "after proc call with no error: ErrorCode: $errorCode"

puts "ERRORINFO:\n$errorInfo\n"

catch {errorproc 2}

puts "after error generated in proc: ErrorCode: $errorCode"

puts "ERRORINFO:\n$errorInfo\n"

proc returnErr { x } {

return -code error -errorinfo "Return Generates This" -errorcode "-999"

}

catch {returnErr 2}

puts "after proc that uses return to generate an error: ErrorCode: $errorCode"

puts "ERRORINFO:\n$errorInfo\n"

proc withError {x} {

set x $a

}

catch {withError 2}

puts "after proc with an error: ErrorCode: $errorCode"

puts "ERRORINFO:\n$errorInfo\n"

catch {open [file join no_such_directory no_such_file] r}

puts "after an error call to a nonexistent file:"

puts "ErrorCode: $errorCode"

puts "ERRORINFO:\n$errorInfo\n"

Result:

after bad proc call: ErrorCode: TCL WRONGARGS

104 CHAPTER 7. FURTHER TOPICS

ERRORINFO:

wrong # args: should be "errorproc x"

while executing

"errorproc"

after proc call with no error: ErrorCode: TCL WRONGARGS

ERRORINFO:

after error generated in proc: ErrorCode: 2

ERRORINFO:

Info String for error

(procedure "errorproc" line 1)

invoked from within

"errorproc 2"

after proc that uses return to generate an error: ErrorCode: -999

ERRORINFO:

Return Generates This

invoked from within

"returnErr 2"

after proc with an error: ErrorCode: TCL READ VARNAME

ERRORINFO:

can’t read "a": no such variable

while executing

"set x $a"

(procedure "withError" line 2)

invoked from within

"withError 2"

after an error call to a nonexistent file:

ErrorCode: POSIX ENOENT {no such file or directory}

ERRORINFO:

couldn’t open "no_such_directory/no_such_file": no such file or directory

while executing

"open [file join no_such_directory no_such_file] r"

7.6 More Debugging - trace

When you are debugging Tcl code, sometimes it’s useful to be able to trace
either the execution of the code, or simply inspect the state of a variable when
various things happen to it. The trace command provides these facilities. It
is a very powerful command that can be used in many interesting ways. It also
risks being abused, and can lead to very difficult to understand code if it is
used improperly (for instance, variables seemingly changing magically), so use
it with care.

There are three principle operations that may be performed with the trace

7.6. MORE DEBUGGING - TRACE 105

command:

• add, which has the general form: trace add type ops ?args?

• info, which has the general form: trace info type name

• remove, which has the general form:‘trace remove type name opList com-
mand‘

Which are for adding traces, retrieving information about traces, and re-
moving traces, respectively. Traces can be added to three kinds of ”things”:

• variable - Traces added to variables are called when some event occurs
to the variable, such as being written to or read.

• command - Traces added to commands are executed whenever the named
command is renamed or deleted.

• execution - Traces on ”execution” are called whenever the named com-
mand is run.

Traces on variables are invoked on four separate conditions - when a variable
is accessed or modified via the array command, when the variable is read or
written, or when it’s unset. For instance, to set a trace on a variable so that
when it’s written to, the value doesn’t change, you could do this:

proc vartrace {oldval varname element op} {

upvar $varname localvar

set localvar $oldval

}

set tracedvar 1

trace add variable tracedvar write [list vartrace $tracedvar]

set tracedvar 2

puts "tracedvar is $tracedvar"

In the above example, we create a proc that takes four arguments. We
supply the first, the old value of the variable, because write traces are triggered
after the variable’s value has already been changed, so we need to preserve the
original value ourselves. The other three arguments are the variable’s name, the
element name if the variable is an array (which it isn’t in our example), and the
operation to trace - in this case, write. When the trace is called, we simply
set the variable’s value back to its old value. We could also do something like
generate an error, thus warning people that this variable shouldn’t be written
to. In fact, this would probably be better. If someone else is attempting to
understand your program, they could become quite confused when they find
that a simple set command no longer functions!

The command and execution traces are intended for expert users - perhaps
those writing debuggers for Tcl in Tcl itself - and are therefore not covered in
this tutorial, see the trace manual page for further information.

106 CHAPTER 7. FURTHER TOPICS

Example

proc traceproc {variableName arrayElement operation} {

set op(write) Write

set op(unset) Unset

set op(read) Read

set level [info level]

incr level -1

if {$level > 0} {

set procid [info level $level]

} else {

set procid "main"

}

if {![string match $arrayElement ""]} {

puts "TRACE: $op($operation) $variableName($arrayElement) in $procid"

} else {

puts "TRACE: $op($operation) $variableName in $procid"

}

}

proc testProc {input1 input2} {

upvar $input1 i

upvar $input2 j

set i 2

set k $j

}

trace add variable i1 write traceproc

trace add variable i2 read traceproc

trace add variable i2 write traceproc

set i2 "testvalue"

puts "\ncall testProc"

testProc i1 i2

puts "\nTraces on i1: [trace info variable i1]"

puts "Traces on i2: [trace info variable i2]\n"

trace remove variable i2 read traceproc

puts "Traces on i2 after vdelete: [trace info variable i2]"

puts "\ncall testProc again"

testProc i1 i2

Result:

7.7. COMMAND LINE ARGUMENTS AND ENVIRONMENT STRINGS107

TRACE: Write i2 in main

call testProc

TRACE: Write i in testProc i1 i2

TRACE: Read j in testProc i1 i2

Traces on i1: {write traceproc}

Traces on i2: {write traceproc} {read traceproc}

Traces on i2 after vdelete: {write traceproc}

call testProc again

TRACE: Write i in testProc i1 i2

7.7 Command line arguments and environment
strings

Scripts are much more useful if they can be called with different values in the
command line.

For instance, a script may extract a particular value from a file by first asking
for the name of the file, then reading the file name, and then extracting the data
from that file.

An alternative is to use the arguments on the command-line: the script can
then loop through all the files given there, and extract the data from each file.

The second method of writing the program can easily be used from other
scripts. This is actually a very powerful method.

The number of command line arguments to a Tcl script is passed as the
global variable argc . The name of a Tcl script is passed to the script as the
global variable argv0 , and the rest of the command line arguments are passed
as a list in argv. The name of the executable that runs the script, such as tclsh
is given by the command info nameofexecutable

Another method of passing information to a script is with environment
variables. For instance, suppose you are writing a program in which a user
provides some sort of comment to go into a record. It would be friendly to allow
the user to edit their comments in their favorite editor. If the user has defined
an EDITOR environment variable, then you can invoke that editor for them to
use.

Environment variables are available to Tcl scripts in a global associative ar-
ray env . The index into env is the name of the environment variable. The
command puts "\$env(PATH)" would print the contents of the PATH environ-
ment variable.

Example

puts "There are $argc arguments to this script"

puts "The name of this script is $argv0"

if {$argc > 0} {puts "The other arguments are: $argv" }

108 CHAPTER 7. FURTHER TOPICS

puts "You have these environment variables set:"

foreach index [array names env] {

puts "$index: $env($index)"

}

7.8 Timing scripts

The simplest method of making a script run faster is to buy a faster processor.
Unfortunately, this isn’t always an option. You may need to optimize your
script to run faster. This is difficult if you can’t measure the time it takes to
run the portion of the script that you are trying to optimize.

The time command is the solution to this problem. time will measure the
length of time that it takes to execute a script. You can then modify the script,
rerun time and see how much you improved it.

time script ?count?

Returns the number of milliseconds it took to execute script. If count is
specified, it will run the script count times, and average the result. The time
is elapsed time, not CPU time.

Note: accurate timings of scripts require that you run them often enough
for random variations in the computer’s performance to average out. Therefore
you should chose the repeat count with some care.

Example

proc timetst1 {lst} {

set x [lsearch $lst "5000"]

return $x

}

proc timetst2 {array} {

upvar $array a

return $a(5000);

}

Make a long list and a large array.

for {set i 0} {$i < 5001} {incr i} {

set array($i) $i

lappend list $i

}

puts "Time for list search: [time {timetst1 $list} 100]"

puts "Time for array index: [time {timetst2 array} 100]"

Result:

Time for list search: 93.83 microseconds per iteration

Time for array index: 1.52 microseconds per iteration

7.9. CHANNEL I/O: SOCKET, FILEEVENT, VWAIT 109

7.9 Channel I/O: socket, fileevent, vwait

Tcl I/O is based on a the concept of channels. A channel is conceptually similar
to a FILE * in C, or a stream in shell programming. The difference is that a
channel may be a either a stream device like a file, or a connection oriented
construct like a socket.

A stream based channel is created with the open command, as discussed
in lesson 26 (Section ??). A socket based channel is created with a socket

command. A socket can be opened as either as a client, or as a server.

If a socket channel is opened as a server, then the tcl program will ’listen’
on that channel for another task to attempt to connect with it. When this
happens, a new channel is created for that link (server-¿ new client), and the
tcl program continues to listen for connections on the original port number. In
this way, a single Tcl server could be talking to several clients simultaneously.

When a channel exists, a handler can be defined that will be invoked when
the channel is available for reading or writing. This handler is defined with the
fileevent command. When a tcl procedure does a gets or puts to a blocking
device, and the device isn’t ready for I/O, the program will block until the
device is ready. This may be a long while if the other end of the I/O channel
has gone off line. Using the fileevent command, the program only accesses
an I/O channel when it is ready to move data.

Finally, there is a command to wait until an event happens. The vwait com-
mand will wait until a variable is set. This can be used to create a semaphore
style functionality for the interaction between client and server, and let a con-
trolling procedure know that an event has occurred.

Look at the example, and you’ll see the socket command being used as
both client and server, and the fileevent and vwait commands being used to
control the I/O between the client and server.

socket -server command ?options? port

The socket command with the -server flag starts a server socket listing on
port port. When a connection occurs on port, the proc command is called with
the arguments:

• channel - The channel for the new client

• address - The IP Address of this client

• port The port that is assigned to this client

socket ?options? host port

The socket command without the -server option opens a client connection to
the system with IP Address host and port address port. The IP Address may
be given as a numeric string, or as a fully qualified domain address. To connect
to the local host, use the address 127.0.0.1 (the loopback address).

fileevent channelID writeable ?script?

The fileevent command defines a handler to be invoked when a condition
occurs. The conditions are readable, which invokes script when data is ready

110 CHAPTER 7. FURTHER TOPICS

to be read on channelID, and writeable, when channelID is ready to receive
data. Note that end-of-file must be checked for by the script.

vwait varName

The vwait command pauses the execution of a script until some background
action sets the value of varName. A background action can be a proc invoked
by a fileevent, or a socket connection, or an event from a Tk widget.

Example

#

Define two auxiliary procs

#

proc serverOpen {channel addr port} {

global connected

set connected 1

fileevent $channel readable [list readLine Server $channel]

puts "OPENED"

}

proc readLine {who channel} {

global didRead

if { [gets $channel line] < 0} {

fileevent $channel readable {}

after idle "close $channel;set out 1"

} else {

puts "READ LINE: $line"

puts $channel "This is a return"

flush $channel;

set didRead 1

}

}

The code to start the server and connect to it from a client :

set connected 0

catch {socket -server serverOpen 33000} server

set server [socket -server serverOpen 33000]

after 100 update

set sock [socket -async 127.0.0.1 33000]

vwait connected

puts $sock "A Test Line"

flush $sock

vwait didRead

set len [gets $sock line]

puts "Return line: $len -- $line"

7.10. TIME AND DATE - CLOCK 111

catch {close $sock}

vwait out

close $server

Result:

OPENED

READ LINE: A Test Line

Return line: 16 -- This is a return

7.10 Time and Date - clock

The clock command provides access to the time and date functions in Tcl.
Depending on the subcommands invoked, it can acquire the current time, or
convert between different representations of time and date.

The clock command is a platform independent method of getting the display
functionality of the unix date command, and provides access to the values
returned by a call to the UNIX system function gettime().

clock seconds

The clock seconds command returns the time in seconds since the epoch. The
date of the epoch varies for different operating systems, thus this value is useful
for comparison purposes, or as an input to the clock format command.

clock format clockValue ?-gmt boolean? ?-format string?

The format subcommand formats a clockValue (as returned by clock seconds)
into a human readable string. The -gmt switch takes a boolean as the second
argument. If the boolean is 1 or true, then the time will be formatted as Green-
wich Mean Time, otherwise, it will be formatted as local time, taking care of
daylight saving time and timezones.

The -format option controls what format the return will be in. The contents
of the string argument to format has similar contents as the format statement.
However, the \%* descriptors are dedicated to dates and times:

clock scan dateString ?-format format?

The scan subcommand converts a human readable string to a system clock
value, as would be returned by clock seconds.

The dateString argument for the clock scan command, without the -format format

option, may be a string in any of these forms:

• time: A time of day in one of the formats shown below. Meridian may
be AM, or PM, or a capitalization variant. If it is not specified, then the
hour (hh) is interpreted as a 24 hour clock. Zone may be a three letter
description of a time zone, EST, PDT, etc.

* hh:mm:ss ?meridian? ?zone?

** hhmm ?meridian? ?zone?

• date: A date in one of the formats shown below.

112 CHAPTER 7. FURTHER TOPICS

Code Meaning
\%a Abbreviated weekday name (Mon, Tue, etc.)
\%A Full weekday name (Monday, Tuesday, etc.)
\%b Abbreviated month name (Jan, Feb, etc.)
\%B Full month name (January, February, etc.)
\%d Day of month
\%j Julian day of year
\%m Month number (01-12)
\%y Year in century
\%Y Year with 4 digits
\%H Hour (00-23)
\%I Hour (00-12)
\%M Minutes (00-59)
\%S Seconds(00-59)
\%p PM or AM
\%D Date as %m/%d/%y
\%r Time as %I:%M:%S %p
\%R Time as %I:%M
\%T Time as %I:%M:%S
\%Z Time Zone Name

** mm/dd/yy ** mm/dd ** monthname dd, yy ** monthname dd ** dd mon-
thname yy ** dd monthname ** day, dd monthname yy

This is known as ”free form scanning”. The clock scan command then uses
a number of heuristic rules to determine the correct form. However, it is safer to
explicitly specify a format to which the date/time string should conform. This
way you can be sure that the date/time is interpreted in a controlled way.

A small example of the use of the -format option with clock scan: in
German speaking countries, the date is often formatted as 2017.01.02, meaning
the second of January, 2017. This is not in a form accepted by the free form
scanning rules:

% puts [clock scan "2017.01.02" -format "%Y.%m.%d"]

1483311600

% puts [clock format 1483311600]

Mon Jan 02 00:00:00 CET 2017

Arithmetic with the clock command is also possible:

Calculate the date ten days and 2 hours from today

set today [clock seconds]

set 10daysFromNow [clock add $today 10 days 2 hours]

puts [clock format $today]

puts [clock format $10daysFromNow]

might print:

Thu Jun 29 19:48:27 CEST 2017

Sun Jul 09 21:48:27 CEST 2017

7.11. MORE CHANNEL I/O - FBLOCKED AND FCONFIGURE 113

(Note the time zone: the dates fall within the daylight saving period of the
year 2017)

Other subcommands of the clock command are useful to measure time in
shorter units than a second: clock milliseconds and clock microseconds.

Example

set systemTime [clock seconds]

puts "The time is: [clock format $systemTime -format %H:%M:%S]"

puts "The date is: [clock format $systemTime -format %D]"

puts [clock format $systemTime -format {Today is: %A, the %d of %B, %Y}]

puts "\nThe default format for the time is: [clock format $systemTime]\n"

set halBirthBook "Jan 12, 1997"

set halBirthMovie "Jan 12, 1992"

set bookSeconds [clock scan $halBirthBook]

set movieSeconds [clock scan $halBirthMovie]

puts "The book and movie versions of ’2001, A Space Odyssey’ had a"

puts "discrepancy of [expr {$bookSeconds - $movieSeconds}] seconds in how"

puts "soon we would have sentient computers like the HAL 9000"

Result:

The time is: 19:51:19

The date is: 06/29/2017

Today is: Thursday, the 29 of June, 2017

The default format for the time is: Thu Jun 29 19:51:19 CEST 2017

The book and movie versions of ’2001, A Space Odyssey’ had a

discrepancy of 157852800 seconds in how

soon we would have sentient computers like the HAL 9000

¡¡enddiscussion¿

7.11 More channel I/O - fblocked and fconfigure

The previous lessons have shown how to use channels with files and blocking
sockets. Tcl also supports non-blocking reads and writes, and allows you to
configure the sizes of the I/O buffers, and how lines are terminated.

A non-blocking read or write means that instead of a gets call waiting until
data is available, it will return immediately. If there was data available, it will
be read, and if no data is available, the gets call will return a 0 length.

If you have several channels that must be checked for input, you can use
the fileevent command to trigger reads on the channels, and then use the
fblocked command to determine when all the data is read.

The fblocked and fconfigure commands provide more control over the
behavior of a channel.

114 CHAPTER 7. FURTHER TOPICS

The fblocked command checks whether a channel has returned all available
input. It is useful when you are working with a channel that has been set to
non-blocking mode and you need to determine if there should be data available,
or if the channel has been closed from the other end.

The fconfigure command has many options that allow you to query or
fine tune the behavior of a channel including whether the channel is blocking or
non-blocking, the buffer size, the end of line character, etc.

fconfigure channel ?param1? ?value1? ?param2 value2 ...?

Configures the behavior of a channel. If no param values are provided, a list of
the valid configuration parameters and their values is returned.

If a single parameter is given on the command line, the value of that param-
eter is returned.

If one or more pairs of param/value pairs are provided, those parameters
are set to the requested value.

Parameters that can be set include:

• -blocking - determines whether or not the task will block when data
cannot be moved on a channel (i.e. if no data is available on a read, or
the buffer is full on a write).

• -buffersize - The number of bytes that will be buffered before data is
sent, or can be buffered before being read when data is received. The
value must be an integer between 10 and 1000000.

• -translation - Sets how Tcl will terminate a line when it is output.
By default, the lines are terminated with the newline, carriage return, or
newline/carriage return that is appropriate to the system on which the
interpreter is running. This can be configured to be:

** auto - Translates newline, carriage return, or newline/carriage return as
an end of line marker. Outputs the correct line termination for the current
platform. ** binary - Treats newlines as end of line markers. Does not add
any line termination to lines being output. This option is also useful if the file
or channel is to be treated as binary. ** cr - Treats carriage returns as the
end of line marker (and translates them to newline internally). Output lines are
terminated with a carriage return. This is the Apple standard. ** crlf - Treats
cr/lf pairs as the end of line marker, and terminates output lines with a carriage
return/linefeed combination. This is the Windows standard, and should also be
used for all line-oriented network protocols. ** lf - Treats linefeeds as the end
of line marker, and terminates output lines with a linefeed. This is the Unix
standard.

The example is similar to the example with a client and server socket (Section
7.9) in the same script. It shows a server channel being configured to be non-
blocking, and using the default buffering style - data is not made available to
the script until a newline is present, or the buffer has filled. When the first
write:

puts -nonewline $sock "A Test Line"‘

is done, the fileevent triggers the read, but the gets can’t read characters
because there is no newline. The getsreturns a -1, and fblocked returns a 1.

7.11. MORE CHANNEL I/O - FBLOCKED AND FCONFIGURE 115

When a bare newline is sent, the data in the input buffer will become available,
and the gets returns 18, and fblocked returns 0.

Example

We expand the two auxiliary procs, so that we get information about the state
of the channel:

proc serverOpen {channel addr port} {

puts "channel: $channel - from Address: $addr Port: $port"

puts "The default state for blocking is: [fconfigure $channel -blocking]"

puts "The default buffer size is: [fconfigure $channel -buffersize]"

Set this channel to be non-blocking.

fconfigure $channel -blocking 0

set bl [fconfigure $channel -blocking]

puts "After fconfigure the state for blocking is: $bl"

Change the buffer size to be smaller

fconfigure $channel -buffersize 12

puts "After Fconfigure buffer size is: [fconfigure $channel -buffersize]\n"

When input is available, read it.

fileevent $channel readable "readLine Server $channel"

}

proc readLine {who channel} {

global didRead

global blocked

puts "There is input for $who on $channel"

set len [gets $channel line]

set blocked [fblocked $channel]

puts "Characters Read: $len Fblocked: $blocked"

if {$len < 0} {

if {$blocked} {

puts "Input is blocked"

} else {

puts "The socket was closed - closing my end"

close $channel;

}

} else {

puts "Read $len characters: $line"

puts $channel "This is a return"

flush $channel;

}

incr didRead;

}

116 CHAPTER 7. FURTHER TOPICS

Now, start the server and send a few lines of text, while also manipulating
the channel’s state.

set server [socket -server serverOpen 33000]

after 120 update; # This kicks MS-Windows machines for this application

set sock [socket 127.0.0.1 33000]

set bl [fconfigure $sock -blocking]

set bu [fconfigure $sock -buffersize]

puts "Original setting for sock: Sock blocking: $bl buffersize: $bu"

fconfigure $sock -blocking No

fconfigure $sock -buffersize 8;

set bl [fconfigure $sock -blocking]

set bu [fconfigure $sock -buffersize]

puts "Modified setting for sock: Sock blocking: $bl buffersize: $bu\n"

Send a line to the server -- NOTE flush

set didRead 0

puts -nonewline $sock "A Test Line"

flush $sock;

Loop until two reads have been done.

while {$didRead < 2} {

Wait for didRead to be set

vwait didRead

if {$blocked} {

puts $sock "Newline"

flush $sock

puts "SEND NEWLINE"

}

}

set len [gets $sock line]

puts "Return line: $len -- $line"

close $sock

vwait didRead

catch {close $server}

Result:

Original setting for sock: Sock blocking: 1 buffersize: 4096

Modified setting for sock: Sock blocking: 0 buffersize: 8

channel: sock0000000001D55EE0 - from Address: 127.0.0.1 Port: 63464

The default state for blocking is: 1

7.12. CHILD INTERPRETERS 117

The default buffer size is: 4096

After fconfigure the state for blocking is: 0

After Fconfigure buffer size is: 12

There is input for Server on sock0000000001D55EE0

Characters Read: -1 Fblocked: 1

Input is blocked

SEND NEWLINE

There is input for Server on sock0000000001D55EE0

Characters Read: 18 Fblocked: 0

Read 18 characters: A Test LineNewline

Return line: 16 -- This is a return

There is input for Server on sock0000000001D55EE0

Characters Read: -1 Fblocked: 0

The socket was closed - closing my end

7.12 Child interpreters

For most applications, a single interpreter and subroutines are quite sufficient.
However, if you are building a client-server system (for example) you may need
to have several interpreters talking to different clients, and maintaining their
state. You can do this with state variables, naming conventions, or swapping
state to and from disk, but that gets messy. The interp command creates new
child interpreters within an existing interpreter. The child interpreters can have
their own sets of variables, commands and open files, or they can be given access
to items in the parent interpreter.

If the child is created with the -safe option, it will not be able to access
the file system, or otherwise damage your system. This feature allows a script
to evaluate code from an unknown (and untrusted) source.

The names of child interpreters are a hierarchical list. If interpreter foo is
a child of interpreter bar, then it can be accessed from the toplevel interpreter
as {bar foo}.

The primary interpreter (what you get when you type tclsh) is the empty
list {}.

The interp command has several subcommands and options. A critical
subset is:

interp create -safe name

Creates a new interpreter and returns the name. If the -safe option is used,
the new interpreter will be unable to access certain dangerous system facilities.

interp delete name

Deletes the named child interpreter.

interp eval name args

This is similar to the regular eval command, except that it evaluates the
script in the child interpreter name instead of the primary interpreter. The
interp eval command concatenates the args into a string, and ships that line

118 CHAPTER 7. FURTHER TOPICS

to the child interpreter to evaluate.

interp alias srcPath srcCmd targetPath targetCmd ?arg ...?

The interp alias command allows a script to share procedures between child
interpreters or between a child and the primary interpreter.

Note that slave interpreters have a separate state and namespace, but do
not have separate event loops. These are not threads, and they will not execute
independently. If one slave interpreter gets stopped by a blocking I/O request,
for instance, no other interpreters will be processed until it has unblocked.

The example below shows two child interpreters being created under the
primary interpreter {}. Each of these interpreters is given a variable name

which contains the name of the interpreter.

Note that the alias command causes the procedure to be evaluated in the
interpreter in which the procedure was defined, not the interpreter in which it
is evaluated. If you need a procedure to exist within an interpreter, you must
interp eval a proc command within that interpreter. If you want an inter-
preter to be able to call back to the primary interpreter (or other interpreter)
you can use the interp alias command.

Example

set i1 [interp create firstChild]

set i2 [interp create secondChild]

puts "first child interp: $i1"

puts "second child interp: $i2\n"

Set a variable "name" in each child interp, and

create a procedure within each interp

to return that value

foreach int [list $i1 $i2] {

interp eval $int [list set name $int]

interp eval $int {proc nameis {} {global name; return "nameis: $name";} }

}

foreach int [list $i1 $i2] {

interp eval $int "puts \"EVAL IN $int: name is \$name\""

puts "Return from ’nameis’ is: [interp eval $int nameis]"

}

#

A short program to return the value of "name"

#

proc rtnName {} {

global name

return "rtnName is: $name"

}

#

7.12. CHILD INTERPRETERS 119

Alias that procedure to a proc in $i1

interp alias $i1 rtnName {} rtnName

puts ""

This is an error. The alias causes the evaluation

to happen in the {} interpreter, where name is

not defined.

puts "firstChild reports [interp eval $i1 rtnName]"

Result:

first child interp: firstChild

second child interp: secondChild

EVAL IN firstChild: name is firstChild

Return from ’nameis’ is: nameis: firstChild

EVAL IN secondChild: name is secondChild

Return from ’nameis’ is: nameis: secondChild

can’t read "name": no such variable

while executing

"return "rtnName is: $name""

(procedure "rtnName" line 3)

invoked from within

"rtnName"

invoked from within

"interp eval $i1 rtnName"

invoked from within

"puts "firstChild reports [interp eval $i1 rtnName]""

(file "xx.tcl" line 37)

	Getting started
	Introduction
	Running Tcl
	Simple Text Output
	Assigning values to variables
	Evaluation and Substitutions 1: Grouping arguments with ""
	Evaluation and Substitutions 2: Grouping arguments with
	Evaluation and Substitutions 3: Grouping arguments with []
	Results of a command - Math 101
	Computers and numbers

	Flow control
	Numeric Comparisons 101 - if
	Textual Comparison - switch
	Looping 101 - While loop
	Looping 102 - For and incr
	Adding new commands to Tcl - proc
	Variations in proc arguments and return values
	Variable scope - global and upvar

	Data types
	Tcl Data Structures 101 - The list
	Adding and Deleting members of a list
	More list commands - lsearch, lsort, lrange
	Simple pattern matching - "globbing"
	String Subcommands - length index range
	String comparisons - compare match first last wordend
	Modifying Strings - tolower, toupper, trim, format
	Example
	Regular Expressions 101
	More Examples Of Regular Expressions
	More Quoting Hell - Regular Expressions 102
	Associative Arrays.
	More Array Commands - Iterating and use in procedures
	Dictionaries as alternative to arrays

	Input and Output
	File Access 101
	Communicating with other programs - socket, fileevent

	Input and Output
	Learning the existence of commands and variables - info
	State of the interpreter - info
	Information about procs - info

	Modularization - source
	Modularization - source
	Building reusable libraries - packages and namespaces

	Further topics
	Creating Commands - eval
	More command construction - format, list
	Substitution without evaluation - format, subst
	Changing Working Directory - cd, pwd
	Debugging and Errors - errorInfo errorCode catch error return
	More Debugging - trace
	Command line arguments and environment strings
	Timing scripts
	Channel I/O: socket, fileevent, vwait
	Time and Date - clock
	More channel I/O - fblocked and fconfigure
	Child interpreters

