AsynCA: Controlling Large-

Scale Experiments with Tcl

BERLIN/GERMANY

Christian Gollwitzer
EuroTcl 2017

ASynCA & EPICS

& AsynCA is a Tcl package to interface with EPICS in an
asynchronous way

& EPICS (Experimental Physics and Industrial Control System) is
a widely used distributed control system for large scale
experiments

Q: When we have already dbus, CORBA,
why we need another middleware?
What's so special about EPICS?

http:/ /www.github.com /auriocus/ AsynCA

http://www.github.com/auriocus/AsynCA

EPICS Overview

EPICS...

& ...is event-based (asynchronous I/O)
...is distributed (and highly scalable)

...requires no configuration on the client

© © ©

...and no central server either

—

What means large scale?

~60 motors, ~30 detector devices
~8000 process variables
1 of ~45 beam lines

EPICS Overview

SampleY
i SampleY.RBV .
SampleY.STOP /

& Input/Output controllers (IOCs) connect 1o devices
(via USB, RS232, GPIB, ...)

& Process Variables (PVs) such as setpoint or current position
are exported via the Channel Access (CA) protocol

& There can be multiple IOCs and clients connected,
no central server

EPICS Overview

Typical motor record & Writing to SampleY moves the

SampleY motor
Sampi_eY.RBV & Reading SampleY.RBV shows the
SampleY.STOP

current position

& Writing to SampleY.STOP halts the
motor

... (~120 PVs)

R5232
=

Simulation courtesy to Mika Pfliiger

EPICS Client C API

ca create channel() connectstoa PV

@

& ca put() / ca put callback() writetoPV

& ca get() / ca get callback() read from a PV
@

ca create subscription() invokes a callback
on each PV update

The EPICS library takes care of...

¢ finding the server in the network, maintaining a TCP connection

& converting between data types and efficient transport
(binary protocol)

& running callbacks upon events

& clients connect to PVs using only the PV name

o I

©

ca create channel() connectstoa PV

©

ca put() / ca put callback() writeto PV

©

ca get() / ca get callback() read from a PV

©

ca create subscription() invokes a callback
on each PV update

The EPICS library takes care of...

finding the server in the network, maintaining a TG

converting between data types and etficient trans
(binary protocol)

running callbacks upon events

clients connect to PVs using only the

AsynCA Client API

@ AsynCA::connect -command cb connectstoaPV
¢ S$Spv put value ?-command cb? writesto PV
¢ S$pv get -command cb requests a read from a PV

¢ S$Spv monitor -command cb invokes a callback
on each PV update

AsynCA takes care of:
& converting the EPICS data types to Tcl values (Tcl_Obj)

& mapping the callbacks to events in the Tcl event loop

AsynCA Client API

@ AsynCA::connect -command cb connectstoaPV
¢ S$Spv put value ?-command cb? writesto PV
¢ S$pv get -command cb requests a read from a PV

¢ Spv monitor -command cb invokes a callback
on each PV update

AsynCA takes care of:
& converting the EPICS data tyf 0 ﬂs’ntaﬂ()“

AsynCA Client API

All network I/O in EPICS happens asynchronously:
© $pv get does not return the value; delivered in the callback

& AsynCA::connect returnsa PV, but it is connected only after the
connect calls fires

¢ $pv put notifies you when the command is processed
(motor has arrived, ...)

+ Nice: event based system, short response times

- Complicated programming model

» Additional Synchronous API functions

AsynCA Synchronous API

& AsynCA::connectwait connects multiple PV
¢ AsynCA::read?multiple? $pv readsa / multiple PV

& AsynCA::putwait writes to multiple PVs

More complicated than it seems...

& Callbacks can come in any order
& Cancelled callbacks from previous calls can ring back

& AsynCA uses dicts and vwait - nesting wait problem

» Transfer to coroutine mechanism wanted

AsynCA Server API

& AsynCA: :server creates a server object
@ $s createPV name ?type ?count?? creates a new PV
¢ Spv write value modifies the stored value

¢ S$pv read returns the stored value

» Very few lines of code to create PVs

AsynCA Server API

¢ S$pv writecommand callback changes the PV to
asynchronous write

¢ Upon writing, the callback receives a request object
¢ $request return signals the completion of the request
¢ Srequest destroy signals a failure

¢ For readcommand, the request object accepts the return value

¢ Simple setup of asynchronous PVs

. ¢ No other EPICS Tcl library
does provide the server API

Conclusion

@ EPICS is a sophisticated distributed control system

@ AsynCA wraps both the client and server libraries and
provides a low-level Tclish interface, mapping callbacks to
Tcl events

@ Asynchronous programming is facilitated by a few
synchronous support routines

@ A standard way to do asynchronous I/O would be most
welcome (Python has asyncio....)

