
AsynCA: Controlling Large-
Scale Experiments with Tcl

Christian Gollwitzer
EuroTcl 2017

AsynCA & EPICS

AsynCA is a Tcl package to interface with EPICS in an
asynchronous way

EPICS (Experimental Physics and Industrial Control System) is
a widely used distributed control system for large scale
experiments

Q: When we have already dbus, CORBA,
why we need another middleware?

What’s so special about EPICS?

http://www.github.com/auriocus/AsynCA

http://www.github.com/auriocus/AsynCA

EPICS Overview

…is event-based (asynchronous I/O)

…is distributed (and highly scalable)

…requires no configuration on the client

…and no central server either

EPICS…

What means large scale?

EPICS Overview

~60 motors, ~30 detector devices

~8000 process variables

1 of ~45 beam lines

photo © Felix Noak

Input/Output controllers (IOCs) connect to devices  
(via USB, RS232, GPIB, …)

Process Variables (PVs) such as setpoint or current position  
are exported via the Channel Access (CA) protocol

There can be multiple IOCs and clients connected,  
no central server

EPICS Overview

LAN
IOC

Client

Client SampleY 
SampleY.RBV
SampleY.STOP

PVs

RS232CA

CA

CA

Sa
m

pl
eY

Writing to SampleY moves the
motor

 Reading SampleY.RBV shows the
current position

Writing to SampleY.STOP halts the
motor

EPICS Overview

IOC

SampleY 
SampleY.RBV
SampleY.STOP
… (~120 PVs)

RS232

Typical motor record

Short demonstration

Sa
m

pl
eY

Simulation courtesy to Mika Pflüger

EPICS Client C API

ca_create_channel() connects to a PV

ca_put() / ca_put_callback() write to PV

ca_get() / ca_get_callback() read from a PV

ca_create_subscription() invokes a callback  
on each PV update

The EPICS library takes care of…

finding the server in the network, maintaining a TCP connection

converting between data types and efficient transport  
(binary protocol)

running callbacks upon events

clients connect to PVs using only the PV name

EPICS Client C API

ca_create_channel() connects to a PV

ca_put() / ca_put_callback() write to PV

ca_get() / ca_get_callback() read from a PV

ca_create_subscription() invokes a callback  
on each PV update

The EPICS library takes care of…

finding the server in the network, maintaining a TCP connection

converting between data types and efficient transport  
(binary protocol)

running callbacks upon events

clients connect to PVs using only the PV name

AsynCA Client API

AsynCA::connect -command cb connects to a PV

$pv put value ?-command cb? writes to PV

$pv get -command cb requests a read from a PV

$pv monitor -command cb invokes a callback  
on each PV update

AsynCA takes care of:

converting the EPICS data types to Tcl values (Tcl_Obj)

mapping the callbacks to events in the Tcl event loop

AsynCA Client API

AsynCA::connect -command cb connects to a PV

$pv put value ?-command cb? writes to PV

$pv get -command cb requests a read from a PV

$pv monitor -command cb invokes a callback  
on each PV update

AsynCA takes care of:

converting the EPICS data types to Tcl values (Tcl_Obj)

mapping the callbacks to events in the Tcl event loopShort demonstration

AsynCA Client API

All network I/O in EPICS happens asynchronously:

$pv get does not return the value; delivered in the callback

AsynCA::connect returns a PV, but it is connected only after the
connect calls fires

$pv put notifies you when the command is processed  
(motor has arrived, …)

+ Nice: event based system, short response times

- Complicated programming model

Additional Synchronous API functions

AsynCA Synchronous API

AsynCA::connectwait connects multiple PV

AsynCA::read?multiple? $pv reads a / multiple PV

AsynCA::putwait writes to multiple PVs

More complicated than it seems…

Callbacks can come in any order

Cancelled callbacks from previous calls can ring back

AsynCA uses dicts and vwait - nesting wait problem

Transfer to coroutine mechanism wanted

AsynCA Server API

AsynCA::server creates a server object

$s createPV name ?type ?count?? creates a new PV

$pv write value modifies the stored value

$pv read returns the stored value

Very few lines of code to create PVs

AsynCA Server API

$pv writecommand callback changes the PV to
asynchronous write

Upon writing, the callback receives a request object

$request return signals the completion of the request

$request destroy signals a failure

For readcommand, the request object accepts the return value

Simple setup of asynchronous PVs

No other EPICS Tcl library  
does provide the server API

Conclusion

EPICS is a sophisticated distributed control system

AsynCA wraps both the client and server libraries and
provides a low-level Tclish interface, mapping callbacks to
Tcl events

Asynchronous programming is facilitated by a few
synchronous support routines

A standard way to do asynchronous I/O would be most
welcome (Python has asyncio….)

