
Speeding up VecTcl —
experiments with

compilation to machine code

Christian Gollwitzer
EuroTcl 2015

What is VecTcl?

x = 1
2a

⇣
b±

p
b

2 � 4ac

⌘
Tcl has (scalar) math in the core:

set x [expr {($b+sqrt($b**2-4*$a*$c))/(2*$a)}]

x =~a ·~b = Â
i

a

i

b

i

set x 0.0
foreach ai $a bi $b {
set x [expr {$x+$a*$b}]

}

There is no direct support for vector math:

 VecTcl: vexpr { x=a*b‘ }

x̄ =
1
N

Â x

i

ȳ =
1
N

Â y

i

b = Â
i

(x

i

� x̄) · (y

i

� ȳ)
Â

i

(x

i

� x̄)2

a = ȳ� bx̄

Linear regression

benchmark numarray against the memory bandwidth limit
set benchdir [file dirname [file dirname [info script]]]

lappend auto_path $benchdir $benchdir/lib
package require vectcl
namespace import vectcl::vexpr

package require rbc
namespace import rbc::vector

bug in napcore: it unsets global variable dir
package require napcore

benchmark linear regression formulae
proc linear_regression_tcl {xv yv {rep 1}} {
 # no setup required
 set t1 "0 microseconds"
 set t2 [time {
 set xsum 0.0; set ysum 0.0
 foreach x $xv y $yv {
 set xsum [expr {$xsum + $x}]
 set ysum [expr {$ysum + $y}]
 }
 set xm [expr {$xsum/[llength $xv]}]
 set ym [expr {$ysum/[llength $xv]}]
 set xsum 0.0; set ysum 0.0
 foreach x $xv y $yv {
 set dx [expr {$x - $xm}]
 set dy [expr {$y - $ym}]
 set xsum [expr {$xsum + $dx * $dy}]
 set ysum [expr {$ysum + $dx * $dx}]
 }
 set b [expr {$xsum / $ysum}]
 set a [expr {$ym - $b * $xm}]
 } $rep]

 list $t1 $t2 $a $b
}

proc linear_regression_vexpr_1f {x y rep} {
 set t1 [time {numarray create $x; numarray create $y}]
 # setup can't be repeated, because it is cached
 # in the Tcl_Objs of x and y
 set t2 [time {
 vexpr {
 beta=(mean(x.*y)-mean(x)*mean(y)) ./ (mean(x.^2)-mean(x).^2)
 alpha=mean(y)-beta*mean(x)
 }
 } $rep]
 list $t1 $t2 $alpha $beta
}

proc linear_regression_vexpr {xv yv rep} {
 set t1 [time {numarray create $xv; numarray create $yv}]
 # setup can't be repeated, because it is cached
 # in the Tcl_Objs of x and y
 set t2 [time {
 vexpr {
 xm=mean(xv); ym=mean(yv)
 beta=sum((xv-xm).*(yv-ym))./sum((xv-xm).^2)
 alpha=ym-beta*xm

Math Tcl

VecTcl
vexpr {
 xm=mean(xv)
 ym=mean(yv)
 beta=sum((xv-xm).*(yv-ym))./sum((xv-xm).^2)
 alpha=ym-beta*xm
}

Much easier
Faster (mostly)

How does it work?

VecTcl is a 2-layered system

vexpr {
 a={1 2 3}
 c=2*(a+{4 5 6})
}

proc numarray::compiledexpressionXX {} {
 upvar 1 a a
 upvar 1 c c
 set a {1 2 3}
 set c [numarray::* 2 [numarray::+ [set a] {4 5 6}]]
}
numarray::compiledexpressionXX

Compiler, written in Tcl

Runtime, written in C

Benchmarks - linear regression

VecTcl is 4x slower than C, but still faster than the others

Shimmering is 5x slower than actual computation

Competitors are still slower there

Live Demo

VecTcl sucks at...

Scalar math

•Bytecoded by Tcl
•No function call
•Dynamic data types

proc collatz {N} {
 set i 0
 while {$N != 1} {
 if {$N%2 == 1} {
 set N [expr {3*$N+1}]
 } else {
 set N [expr {$N/2}]
 }
 incr i
 }
 return $i
}

vproc collatz {N} {
 i=0
 while N != 1 {
 if (N%2 == 1) {
 N=3*N+1
 } else {
 N=N/2
 }
 i=i+1
 }
 i
}

•Vectors used as scalars
•4.5 function calls per iteration

VecTcl sucks at...

Scalar math

•Bytecoded by Tcl
•No function call
•Dynamic data types

proc collatz {N} {
 set i 0
 while {$N != 1} {
 if {$N%2 == 1} {
 set N [expr {3*$N+1}]
 } else {
 set N [expr {$N/2}]
 }
 incr i
 }
 return $i
}

vproc collatz {N} {
 i=0
 while N != 1 {
 if (N%2 == 1) {
 N=3*N+1
 } else {
 N=N/2
 }
 i=i+1
 }
 i
}

•Vectors used as scalars
•4.5 function calls per iteration

43 µs
460 µs

VecTcl sucks at...

Complex operations

vexpr {
 r=x.*x + y.*y
}

for (int i=0; i<N; i++) {
 r[i] = x[i]*x[i] + y[i]*y[i];
}

•2N Flops
•2N temporary storage
•3 passes over the data

•2N Flops
•2 temporary registers
•1 pass over the data

vexpr {
 t1=x.*x
 t2=y.*y
 r=t1+t2
}

Compilation experiment

Both cases can be sped up by native compilation

Branch jit on github
Code compiled to SSA, then C
C code is compiled and linked using tcc4tcl
Arguments are type-annotated

vectcl::jitproc squares {{xv {double n}} {yv {double n}}} {
 xv.*xv+yv.*yv
}

Scalar math result

jitproc cos_jit {{x {double 1}}
{n {int 1}}} {
 j=0
 s=1.0
 t=1.0
 i=0
 while (i < n) {
 t=0-t*x*x / (j+1) / (j+2)
 s =s + t
 j=j+2
 i=i+1
 }
 s
}

10x increase over Tcl, 100x over pure VecTcl
C code looks similar to handwritten code

Squares result

vectcl::jitproc squares {{xv {double n}} {yv {double n}}} {
 xv.*xv+yv.*yv
}

Squares result

vectcl::jitproc squares {{xv {double n}} {yv {double n}}} {
 xv.*xv+yv.*yv
}

Squares result

vectcl::jitproc squares {{xv {double n}} {yv {double n}}} {
 xv.*xv+yv.*yv
}

Squares result

vectcl::jitproc squares {{xv {double n}} {yv {double n}}} {
 xv.*xv+yv.*yv
}

JIT compiler cuts
down one time cost
tcc is too weak to beat
standard VecTcl
Inner loops could be
compiled using a JIT
library

Obstacles with compilation

Can I use it already?

Yes, you can, but....

... you don‘t want to!

Obstacles with compilation

No slices
No for loops (only while)
Reductions aren‘t working properly
Function calls mess up type inference
Argument types must be given
Certainly many bugs

Can I use it already?

Yes, you can, but....

... you don‘t want to!

Obstacles with compilation

Was it difficult to do?

Some things will never work /are impossible:

proc setx {v} {
 upvar 1 x x
 set x $v
}

vproc test {y} {
 setx(y)
 3*x
}

Obstacles with compilation

upvar, uplevel and traces

Was it difficult to do?

Some things will never work /are impossible:

2000 LOT (lines of Tcl)

proc setx {v} {
 upvar 1 x x
 set x $v
}

vproc test {y} {
 setx(y)
 3*x
}

Variable x doesn‘t even exist -> compiler error
If it exists, it is a C local variable, inaccessible from outside

Obstacles with compilation

Was it difficult to do?

Some things will never work /are impossible:

proc mysurprise {i} {
 if {$i > 3} { return -code break }
 expr {$i*2}
}

vproc test {} {
 x=0
 for i=1:10 {
 x=x+mysurprise(i)
 }
 x
}

Obstacles with compilation

return codes

Was it difficult to do?

Some things will never work /are impossible:

2000 LOT (lines of Tcl)

proc mysurprise {i} {
 if {$i > 3} { return -code break }
 expr {$i*2}
}

vproc test {} {
 x=0
 for i=1:10 {
 x=x+mysurprise(i)
 }
 x
}

Obstacles with compilation

Was it difficult to do?

Some things will never work /are impossible:

Hard to get right:

vproc test {} {
 x=0
 x+somefunc()
}

Obstacles with compilation

Dynamic code changes
Redefinition of builtins (numarray::+ & friends)

Was it difficult to do?

Some things will never work /are impossible:

2000 LOT (lines of Tcl)

Hard to get right:
Function calls: What is the return type of test?

vproc test {} {
 x=0
 x+somefunc()
}

Obstacles with speed-up

tcc4tcl LLVM

sljit, NanoJIT, LuaJIT, ORC

Small footprint (~1MB)
ANSI C
Easy code generation
(accepts C)
Weak optimizer (register
allocation)

Large library
C++
Needs LLVM bytecode

Strong optimizer

Too limited, C++, restrictive license...

Conclusion & The Future

VecTcl provides an easy interface to numeric math in Tcl

Performance superior to other packages, but worse than C

JIT compilation possible for restricted subset,
speed-up 10× –100×

tcc backend provides too weak optimization

Rewrite in C++/LLVM ?

TC
L

Why or when is it slow?

set a [zeros 1000]
set __temp1 999
for {set i 0} {$i <= $__temp1} {incr i 1} {
numarray::= a [list [list [set i] [set i] 1]]
[numarray::* 2 [set i]]
}

Tightly coded loops:
vexpr {
 a=zeros(1000);
 for i=0:999 {a[i]=2*i}
}

•Avoid if possible:

•Huge speed-up possible by JIT compilation (tcc4tcl?)

vexpr { a=2*linspace(0,999,1) }

TC
L

Why or when is it slow?

Vector operations close to the memory bandwidth
Until ~10kbytes, the command dispatch dominates
Matrix shape (currently) has a strong effect
Improvement by OpenMP, BLAS, better iterators

Speed of the elementary operations

No external dependencies

To compile VecTcl you need:
a C compiler
Tcl

To rebuild VecTcl from scratch:
autoconf
tcllib::parsertools
CLAPACK

To run VecTcl you need:
VecTcl
TclOO

3264

FORTRANC++ ©
GPL

