

WiP: jUnit compatible XML
reporting for tcltest

or: Abusing a refactored tclunit to
enable Jenkins statistics on tcltest

output

Matthias Kraft

Agenda

● Motivation
● Why tclunit?
● Where to find?
● What's next?
● That's it …
●

http://www.jenkins-ci.org/

Motivation

● At Software AG we are using Jenkins
for Continuous Integration builds.

● Jenkins can provide quite nice
statistics, out of the box e. g. for
unit tests → View, Test Results

● a file called TEST-foo.xml in an
undocumented format is necessary

● To employ these I wrote a script at
work, which is closed source and “ ”
more like a quick hack, however

http://localhost:8080/view/Test%20Graphs/
http://localhost:8080/job/Tcl_Trunk_Build/lastCompletedBuild/testReport/(root)/
http://localhost:8080/job/Tcl_Trunk_Build/lastCompletedBuild/testReport/(root)/
http://localhost:8080/view/Test%20Graphs/
http://localhost:8080/job/Tcl_Trunk_Build/lastCompletedBuild/testReport/(root)/
http://www.softwareag.com/

Why tclunit?

● Initial intent was to write own
package

● Stumbled upon → sf.net While looking if the
name is already reserved

● Found an Easy and non-intrusive
architecture which only needs to be
revealed and extended

http://tcllib.cvs.sf.net/viewvc/tcllib/tclapps/apps/tclunit/
http://tcllib.cvs.sf.net/viewvc/tcllib/tclapps/apps/tclunit/
http://docs.tinyos.net/tinywiki/index.php/TUnit

Where to find?

● The old GUI haD been extracted and is
an extra script now, like the new XML
generator

● The tclunit package is now only an
event generator acting on the log
messages of tcltest

● It is still work in progress, although
it can already be used

● All can be found at → github.com

https://github.com/makr/tclunit
https://github.com/makr/tclunit

What's next?

● Still missing …
– the timing information
– The stdout/stderr capture
– Handling of errors in tests

● Getting it right, i.e. use of tdom
● More filters?

That's it ...

● Thanks for your attention!
● Any Suggestions and Questions are
welcome...

WiP: jUnit compatible XML
reporting for tcltest

or: Abusing a refactored tclunit to
enable Jenkins statistics on tcltest

output

Matthias Kraft

* Welcome to my short Work-in-Progress talk.
* I'll tell you something about abusing a refactored

tclunit to enable Jenkins statistics on tcltest output.

Agenda

● Motivation
● Why tclunit?
● Where to find?
● What's next?
● That's it …
●

* The agenda …
* I use a few terms not everyone might be familiar

with...
* Jenkins (which is a fork of Hudson) is a Continuous

Integration Build server. It is “making it easier for
developers to integrate changes to the project, and
making it easier for users to obtain a fresh build.
The automated, continuous build increases the
productivity.”

→ jenkins-ci.org
* Continuous Integration is an agile development

method. Together with Unit tests, e. g. written
during Test Driven Development, it provides a
possibility to deliver small pieces of software in
short cycles with a high quality.

Motivation

● At Software AG we are using Jenkins
for Continuous Integration builds.

● Jenkins can provide quite nice
statistics, out of the box e. g. for
unit tests → View, Test Results

● a file called TEST-foo.xml in an
undocumented format is necessary

● To employ these I wrote a script at
work, which is closed source and “ ”
more like a quick hack, however

→ softwareag.com
* “View” is a link to my local Jenkins showing two

projects with their current test abstract and history
* “Test Results” is also a link into my Jenkins, but

deep into a project. It shows a table of the test
scripts run and how many of their tests passed,
were skipped or failed. It also reports a failed test
case. … and by clicking on the links there more
details can be displayed or history information
could be retrieved, etc.

* the test logs have to come in a special XML format
* it however is not documented by a DTD or a

Schema, only by the implementation within the ant-
junit task, or Jenkins (directory
core/src/main/java/hudson/tasks/junit/)

Why tclunit?

● Initial intent was to write own
package

● Stumbled upon → sf.net While looking if the
name is already reserved

● Found an Easy and non-intrusive
architecture which only needs to be
revealed and extended

→ “sf.net”:
tcllib.cvs.sf.net/viewvc/tcllib/tclapps/apps/tclunit/

* my initial idea was to take tcltest and make it emit
the XML test log, then call it tclunit

* but tclunit was already taken by a tclapp written a
couple of years ago by Bob Techentin

* although his tclapp was just a GUI for running a test
script (or all test scripts within a directory) he wrote
in a very clean style

* he basically starts a remote interpreter process
running the tests and captures its output acting on
the log message

* btw another considered name was already taken,
too

→ docs.tinyos.net/tinywiki/index.php/TUnit

Where to find?

● The old GUI haD been extracted and is
an extra script now, like the new XML
generator

● The tclunit package is now only an
event generator acting on the log
messages of tcltest

● It is still work in progress, although
it can already be used

● All can be found at → github.com

→ “github.com”: https://github.com/makr/tclunit
* so all I had to do was separating GUI and

functionality and make a proper tcl package from it
* then writing the XML generator
* although a couple of things are still missing it can

already be used, as seen in the project page,
where the “make test” output of Tcl is parsed by the
script

What's next?

● Still missing …
– the timing information
– The stdout/stderr capture
– Handling of errors in tests

● Getting it right, i.e. use of tdom
● More filters?

* the test cases as well as the complete test run can
have timing information

** from tcltest currently only the complete test run
timing information is available which would need to
be stored as attribute in the testsuite header

** due to my as-easy-as-possible approach this is not
possible

* stdout/stderr can be captured and stored in the XML
file, too

* errors in test cases are currently completely ignored
* to add timing and output the current serial plain text

handling has to make place for a proper DOM tree
build up

*no more todos from my side, but if anyone has other
ideas, feel free to fork on github and I will accept
pull requests then

That's it ...

● Thanks for your attention!
● Any Suggestions and Questions are
welcome...

* now its time to wake up and ask questions or tell me
that I did something completely stupid in my spare
time :-)

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7

