
Reporting Tools With Tcl



History
• Start was about 1995 in payed work
• Client/Server architecture
• Originally use of socket interface
• Client as WISE installation package



Original Architecture
• Private protocol on socket interface
• Client uses Tcl/Tk
• Client is stored in files in a COMMON and an application 

specific directory
• After installation automatic update of client when starting
• Diffrences are identified by timestamp on server and 

client
• Out-of-date files are stored on the client and evaled in 

parallel



Goal of the Tool

• Present financial reports as tables
• Entering verified data to be used as SAP frontend
• Drive selection and contents of report with comboboxes
• There are also forms for entering data
• Contents of report may depend on access rights and 

function of users



Step 2
• Use of apache server with rivet on server side 
• Use of http protocol to client
• Client is acting as a „browser“
• Adaption for client is at one place (http instead of socket 

protocol)



Step 3
• Use of starkit for client instead of WISE installation
• Only one .exe file necessary on client 
• Starkit contains Tcl/Tk runtime, Itcl, Bwidget, Iwidgets 

and minimal client
• Specific client is built on info sent from server



Step 4
• Use of DB (mysql/oracle) for client metainfo
• Client is a generic client with generic parts like 

spreadsheet table, comboboxes, entryfields etc.
• Specific layout of client is driven by attributes to the 

elements of a „report“
• A „report“ can also be a form for entering data
• A „report“ can have a forms part and a spreadsheet part
• Selection of reports with tabnotebook later with a tree



Step 5
• Reimplementing the presented tools as open source 

project
• Use of newer features of Tcl/Tk and itclng
• Use of sqlite3 for layout/attribute infos
• Rebuild existing tool for administration of layout/attribute 

infos (this is built also with the same technique)
• Restructure/simplify layout/attribute info
• Enable use of different UI techniques like tile



General Structure
• Client very similar to existing client
• Use of paned windows one for selection of report from a 

tree, one for the form/report part
• Form/report part is a frame consting of upto 9 frames 

within it
• Every part within it can again consist of upto 9 frames



Layout Details (1)
• Use of grid manager
• Allows multi rows/columns frames
• Allows selection box area to be vertical or horizontal
• Allows form for entering data and spreadsheet part in one 

„report“



Layout Details (2)
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Some UI Elements
Calendar WidgetEntryfieldCombobox

Button Box LabelRadio Box

Table Report
(spreadsheet)

Input Report
(form for entering data) Tree Report



Attributes for UI Elements
• row
• column
• adjust
• text (language dependent label)
• label position
• sticky
• width
• height
• fixed
• :



Structure of Meta Info (1)
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application apptext



Structure of Meta Info (2)
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Structure of Meta Info (3)
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Structure of Meta Info (2)
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Report Meta Info
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Building an InputReport
• Filling of the field meta information tables
• Filling of the report meta information
• Running the application



Status
• This project is a work in progress
• ATM not much activity because of other projects
• Possibly influenced in the future from ATWF
• Will be continued!



Conclusions (1)
• As tdbc is now available use of tdbc information instead 

of apptabname, appfldname, appfldattr tables
• Clean up/redesign of report meta information
• The information passed to the client should be in a more 

generic format like for example dicts
• Should eventually try to use as a second UI Aejaks



Conclusions (2)
• Project started to make ideas from payed work an open 

source project
• Should allow fast development of some dedicated class of 

applications (no general purpose tool)
• Use of newer technology allows easier maintainance of 

code base
• Additional developpers would speed up implementation
• No web frame work, but a tool for building client/server 

applications, which can be started via an URL from a 
browser
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