
Reporting Tools With Tcl



History
• Start was about 1995 in payed work
• Client/Server architecture
• Originally use of socket interface
• Client as WISE installation package



Original Architecture
• Private protocol on socket interface
• Client uses Tcl/Tk
• Client is stored in files in a COMMON and an application 

specific directory
• After installation automatic update of client when starting
• Diffrences are identified by timestamp on server and 

client
• Out-of-date files are stored on the client and evaled in 

parallel



Goal of the Tool

• Present financial reports as tables
• Entering verified data to be used as SAP frontend
• Drive selection and contents of report with comboboxes
• There are also forms for entering data
• Contents of report may depend on access rights and 

function of users



Step 2
• Use of apache server with rivet on server side 
• Use of http protocol to client
• Client is acting as a „browser“
• Adaption for client is at one place (http instead of socket 

protocol)



Step 3
• Use of starkit for client instead of WISE installation
• Only one .exe file necessary on client 
• Starkit contains Tcl/Tk runtime, Itcl, Bwidget, Iwidgets 

and minimal client
• Specific client is built on info sent from server



Step 4
• Use of DB (mysql/oracle) for client metainfo
• Client is a generic client with generic parts like 

spreadsheet table, comboboxes, entryfields etc.
• Specific layout of client is driven by attributes to the 

elements of a „report“
• A „report“ can also be a form for entering data
• A „report“ can have a forms part and a spreadsheet part
• Selection of reports with tabnotebook later with a tree



Step 5
• Reimplementing the presented tools as open source 

project
• Use of newer features of Tcl/Tk and itclng
• Use of sqlite3 for layout/attribute infos
• Rebuild existing tool for administration of layout/attribute 

infos (this is built also with the same technique)
• Restructure/simplify layout/attribute info
• Enable use of different UI techniques like tile



General Structure
• Client very similar to existing client
• Use of paned windows one for selection of report from a 

tree, one for the form/report part
• Form/report part is a frame consting of upto 9 frames 

within it
• Every part within it can again consist of upto 9 frames



Layout Details (1)
• Use of grid manager
• Allows multi rows/columns frames
• Allows selection box area to be vertical or horizontal
• Allows form for entering data and spreadsheet part in one 

„report“



Layout Details (2)
toprighttopcentertopleft

topleft

centerleft

topcenter topright

centerrightcentercenter

bottomleft bottomcenter bottomright

bottomright

centercenter centerrightcenterleft

bottomcenter



Layout Details (3)
toprig

ht
Form part 
(topcenter)

Selection 
Box Part
(topleft,

centerleft)

bottom
right

Spreadsheet Part
(centercenter)

center
right

Info part (bottomleft, bottomcenter)



Some UI Elements
Calendar WidgetEntryfieldCombobox

Button Box LabelRadio Box

Table Report
(spreadsheet)

Input Report
(form for entering data) Tree Report



Attributes for UI Elements
• row
• column
• adjust
• text (language dependent label)
• label position
• sticky
• width
• height
• fixed
• :



Structure of Meta Info (1)
appfldattrappfldnameapptabname

appfldinfo

application apptext



Structure of Meta Info (2)
appdepartmentapplocation

appperson

apppersonfunction

appfunction

functionapplication



Structure of Meta Info (3)

fldgridposition

appfldinfo appfunction

fldfunction



Structure of Meta Info (2)
appdepartmentapplocation

appperson

apppersonfunction

appfunction

functionapplication



Report Meta Info
appwidgettype-

optionappwidgettype

appreport

appdependent-
report

appfunction-
report

appfunction appreport-
combo

appwidget

appwidget-
option

appreport-
frame

fldfunctioninfoappselection-
widget



Building an InputReport
• Filling of the field meta information tables
• Filling of the report meta information
• Running the application



Status
• This project is a work in progress
• ATM not much activity because of other projects
• Possibly influenced in the future from ATWF
• Will be continued!



Conclusions (1)
• As tdbc is now available use of tdbc information instead 

of apptabname, appfldname, appfldattr tables
• Clean up/redesign of report meta information
• The information passed to the client should be in a more 

generic format like for example dicts
• Should eventually try to use as a second UI Aejaks



Conclusions (2)
• Project started to make ideas from payed work an open 

source project
• Should allow fast development of some dedicated class of 

applications (no general purpose tool)
• Use of newer technology allows easier maintainance of 

code base
• Additional developpers would speed up implementation
• No web frame work, but a tool for building client/server 

applications, which can be started via an URL from a 
browser


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

