Mavrig

a Tcl application construction kit

Jean-Claude Wippler
Equi 4 Software, NL

EuroTcl 2008, Strasbourg, FR

Lets write an app

Tons of packages to build with - Tcllib, etc

Choose:
file structure, dev vs release dirs
packages & extension versions
naming conventions
inter-subsystem connections

 and an object system, and a database, and ...

So many details

Havent written one line of code vyet!
Many - boring - choices

Cant easily revisit these choices later
Can I at least re-use my next code?

* Nope, because I made lots of choices...

Give me a way out, please!

DNTO

I dont need another “framework”
I want to retain full control of my app
I just want more convenience out of the box

But above all... Do Not Take Over

Utility code, conventions, “evolvability”

Whats an Application?

Command Line
GUI

Network Server
Network Client
Web-App 2.0!
Embedded

My favorite procs
New Packages
C/C++ Extensions

/

Plug-ins, "Themes'’

CONVENTIONS...

Does It matter?

In theory, no - in practice, you bet

So many silly choices up front

Choices hamper change and “agility”
Choices are the enemy of scripting
Why cant we just write code & tests?

Yet allow for changes as you gain insight

Starkits

Place all your stuff in a “vfs” directory
Add “main.tcl” & put extensions in “lib/”
Develop as usual, nothing changes

When ready - wrap and ship - period!

But we could do so much more...

What can we learn?

Some conventions are real time savers

Use them and you get tools to help - SDX
New conventions can benefit everyone

» Starpacks - exes - were added later on

So one trick seems to be...

Pick a few conventions

Convention = Second Nature

Second Nature = More Time To Think !

But... DNTO

I want conventions to fit in nicely

If natural, they’ll move down my spine

Its 1 Tcl script, defining 1 command
A couple of - hopefully - useful procs
Some - hopefully - useful conventions

A bit of - hopefully - useful machinery

DNTO - Rigs purpose is to serve and help

Naming can Kill you

o If its re-usable, it has to be named right
* Rig.tcl:
* file name == module name == namespace
» “"Rig cmd .." - no global var pollution
e a few other cmds, if not defined by you

 Rig is a "module” and supports lots of ‘em

Modules, i.e. “rigs”

* Rig will load file "Cool.tcl” as a module:

namespace eval Cool {
namespace export -clear {[a-z]*}
namespace ensemble create
source /path/to/Cool.tcl

}

e Uses ensembles from Tcl 8.5:

“Cool::abc 1 2 3" = "Cool abc 1 2 3”

 To auto-load, call “"Rig modules /path/to” once

Convenience

If MyModule.tcl contains this:

proc shout {msg} {
puts [string toupper Smsg]

}

Then I can use it anywhere in my app as:
MyModule shout “"Have a nice day!”
Each module acts as a singleton object

Lower-case procs are its “public methods”

Simplicity

» Dont add more machinery than needed

e If you cant remember it, then forget it!

* Rig.tcl is a single file:
* App: your stuff + "Rig.tcl” (+ "main.tcl”)
 All Rig "features” are in the "Rig” cmd

* Auto-loading & auto-downloading

main.tcl

"main.tcl” defines your policies for Rig

* Heres a simple but complete version:

source ./Rig.tcl
Rig modules ./rigcache ?http://<URL..>/?

Rig event main.Init Sargv

Rig event main.Run

if {![info exists Rig::exit]} {
vwait Rig::exit

}

Rig event main.Done S$Rig::exit

exit SRig::exit

http://modules.mavrig.org
http://modules.mavrig.org

Command Line

* hellol.tcl

puts "Hello, world!"
exit

* What happened?

* Rig auto-loads all *.tcl files next to it

 Rig defined a module called “hellol”

* But thats cheating - hellol.tcl is stupid

Rig-aware cmd-line

 hello2.tcl:

Rig hook main.Run {
puts "Hello, world!"”
set ::Rig::exit O

}
 What happened after loading?

* "main.tcl” triggers "main.Run” event

* When hook is called, do a clean exit

Why bother?

e Same "main.tcl” can also be used for:
Tk app, net server, net client, web app
Or any mix of them...
E.g. a socket for TkCon remote access
visit website for several examples

* One less app choice to make up front

Web Apps - Part 1

e A web server in 6 lines of Tcl:

Rig hook main.Run {
Httpd start 8080 [namespace code Req]

%roc Req {obj} {

Sobj respond "<hl>Hello, world!</hl>"
}

* What happened?
* Rig auto-downloaded the Httpd rig

* That module implements web server core

Web Apps - Part 2

* A few modules, each only 100s of LOC:
* Httpd: HTTP server, each req is an ob}
* Render: Mason-like template engine
o Wikify: Text to HTML converter

* Minimal dependencies, you glue it together

* Any others? You bet. Yours. Be creative!

Turbo development

* Bonus - a major productivity boost:
No more edit-run-debug cycles
Keep editor + browser + app running
Turbo development: edit-run-edit-run
.. Will give a demo in the break ...

 Its all based on auto-reloading modules

Mavrig

 If Rig is a step in the right direction...

 ..then Mavrig wants to take this further

* Mavrig = Modules And Views with Rig
 Good modularity leads to code re-use

* Views are about rich data structures

Modularity

API - all calls are "module cmd ..
Coupling - Rig events are used as glue

Naming - make sure things dont clash

Modularity takes effort up front

Benefits later: test isolation, re-use, tools

Rig Collection

e I'm setting up a module / rig collection
e Public, even if nobody else wants it
e Conftributors can get Subversion access
* Create private rigs, check-in to re-use
* A rig is not just to encapsulate new code

* Package wrappers, downloaders, builders

Why?

I'm tired of seeing lots of great code
"snippets” which arent easily re-used

All we need are a few conventions ...
.. and a simple website to share modules
Find good conventions for docs & tests

Rig can be a catalyst - but even if no one
else wants if, Rig scratches my own itch.

How?

All it takes to auto-load your modules is:
"Rig modules ./rigcache”

Add an extra arg and it can auto-download:
"Rig ... http://contrib.mavrig.org/”

Downloaded only on first use, then its local

Module inter-dependencies work fine

http://modules.mavrig.org
http://modules.mavrig.org

When?

Rig, docs, and a few modules on-line now
Am calling this "Rig 0.x" so far...
Currently using Rig for Mavrig myself
Various Mavrig modules “in progress”
Play with it, pull on it, find out the limits

If it sucks, let me know how / what to fix

Thank you

* Website for (and built with) Rig and Mavrig:
http://mavrig.org/

(high-availability server in Nurnberg)

e Lets make it convenient to re-use Tcl stuff

Jew@equi4.com

http://mavrig.org
http://mavrig.org
mailto:jcw@equi4.com
mailto:jcw@equi4.com

