
(XUR�7FO�����

'HYHORSPHQW�DQG�XVDJH�RI�&��-DYD�DQG�7FO�EDVHG�VFDQQHUV�
LQ�7FO�DSSOLFDWLRQV
Dr. Detlef Groth and Alexander Straub, MPIMG Berlin, Germany,
dgroth(at)molgen.mpg.de

Abstract: Although since many years many scanner generation frameworks like
flex (C), jflex (java) and fickle or ylex (Tcl) are existing most of the scanners and
parsers are still handwritten. This is this case although it is well proven that
automatically generated scanners are easier to write and to maintain and are at least
as fast as handwritten ones. Tcl lexers like fickle and ylex are Tcl-only
implementations and are well suited for relative small files. In bioinformatics
however we are working often with files several gigabytes in size. Here tcl-based
scanners are offering only a poor performance if compared with C- or java based
scanners. In order to overcome those limitations we were trying to utilise C-based
scanners inside tcl-programs using the critcl package and java based scanners using
the jacl/tcljava package with promising results.

The current scanner generator packages for tcl, ylex, fickle and tcLex have some
serious drawbacks thereof limiting its usability. tcLex is a old C-extension and not
actively maintained. ylex requires that the whole string which will be scanned must
be in memory which is not suitable for large files. Both ylex and tcLex use more a
tclish than a lex-like syntax to dynamically construct scanners. The scanners can be
saved as tcl-code as well to generate scanners which can be used independently
from the ylex-package. Fickle in contrast use lex-like input files and generates only
static scanners which can be used independently from the fickle command line
application. In order to overcome the global type of variables and procedures I
recently developed ifickle which generates itcl-classes. Those scanners can be
integrated into a larger framework/package like the biotcl-package. However due
to its heavy use of the regexp command both ylex and fickle/ifickle are generating
very slow scanners if the file size increases. Ifickle based scanners have a slightly
larger startup overhead and are slightly less slow on larger files.

Table 1 compares the performance of various wc-scanners either hand crafted or
generated with scanner generation frameworks like perl-parseLex, flex or re2c. As
it visible performance of ylex and fickle / ifickle based scanners is not acceptable if
larger files as often required if analysing biological data like genomes, proteomes.

In order to overcome the slow performance with scanners generated by tcl-based
scanners generators, we were investigating the usability of C and Java based
scanners for integration into tcl-programs. From the two C-based scanners, flex and
re2c we choose re2c for an wc-implementation. The reason was, that in contrast to
flex, re2c does not depend from external libraries and the code generated from re2c
can thereof be easily integrated into tcl-programs using the critcl-package.
Furthermore it seems that from our data and from the data of others re2c based
scanners are 2 - 5 times faster than flex based scanners.

Starting to use re2c was somehow difficult, but after fixing some initial issues with
buffer filling and wrapping the re2c application into the critcl-application it was

possible to use the re2c scanner either standalone or via the tcl application. The
performance was comparable with the pure re2c application however the startup
cost was with 1 second for small files quite high.

Because coding in C is for many people much more difficult than coding in java we
were further investigating the possibility to utilise java based scanners inside tcl.
There are two possible choices for communicating between the java machine and
the tcl application. Recently there has been some effort to compile the tclblend
library with stubs to utilise it inside starkits, however there is currently no starkit
enabled tclblend library available. Tclblend would enable tcl programmers to
directly communicate with java classes like with tcljava. In our study we were
utilising a second approach, communication via sockets. The tcl application is
looking for a free socket port and starts the java application. The java application
sends it's parsing results via the socket connections to the tcl application. This
approach has bigger startup penalty, because two interpreters must be started, but
for large files which should be scanned, the startup is less import than the actual
scanner performance. As can be seen from table 1 the scanning speed is
comparable with a re2c based wc scanner. Both are about 3 orders of magnitude
faster in comparison to tcl based scanners.

We were furthermore writing scanners with ifickle, re2c and jflex for biological
data (Blast). Table 2 summaries our observations. The speed for tcl based scanners
on larger files is very slow, however Coding and Integration with pure tcl based
scanners is easier to accomplish in comparison with re2c or java based scanners.

&RQFOXVLRQV
re2c and jflex based scanners can be utilised for tcl-application thereof limiting the
bad performance of current tcl based scanner generators. The big speed difference
might be due to the fact that both jflex and re2c did not use any regexp library, but
rather are building its own effective mechanism to translate regular expressions
into a fast scanner. It might be therefore of interest to study the code generated by
re2c and especially for jflex and trying to build a similar tcl based scanner
generator. Using the critcl/re2c or socket/java approach gives some startup
penalties but this is not of importance if large amount of data, as common in
biology, needs to be scanned.

References

tcLex http://membres.lycos.fr/fbonnet/Tcl/tcLex/index.en.htm
fickle http://tcl.jtang.org/fickle/
ylex http://www.fpx.de/fp/Software/Yeti/
re2c http://re2c.sourceforge.net/
flex http://www.gnu.org/software/flex/
jflex http://jflex.de/
tclblend http://tcljava.sourceforge.net/

7DEOHV
Table 1:

Mode/Size(byte) 1 10 100 1000 10000 100000 1000000 1000000

tcl-hand 0.130 0.120 0.200 0.290 0.135 0.489 3.877 nd

tcl-yeti-dynam 0.531 0.561 0.574 0.643 1.538 9.765 91.706 nd

tcl-yeti-static 0.454 0.466 0.474 0.551 1.467 9.491 89.334 nd

tcl-fickle 0.129 0.224 0.133 0.184 0.487 3.460 33.099 nd

tcl-ifickle 0.439 0.435 0.451 0.489 0.713 2.801 23.947 nd

python-hand 0.724 0.258 0.260 0.248 0.260 0.881 1.739 nd

perl-hand 0.013 0.012 0.013 0.012 0.015 0.043 0.321 nd

perl-parseLex 0.213 0.203 0.229 0.258 0.437 2.359 21.998 nd

java-hand 0.770 0.475 0.502 0.499 0.496 6.101 5.748 nd

java-jflex 0.579 0.482 0.567 0.488 0.577 0.661 0.676 1.584

tcl-java-jflex 1.003 1.001 1.002 0.996 0.998 1.014 1.104 1.983

flex-wc 0.006 0.005 0.005 0.006 0.012 0.041 0.376 3.633

wc 0.005 0.080 0.006 0.007 0.009 0.007 0.020 0.148

re2c 0.011 0.009 0.009 0.009 0.011 0.027 0.185 0.618

tcl-critcl-re2c 1.489 1.485 1.316 1.313 1.396 1.388 1.421 1.524

Table 2:

- Speed Coding Integration Startup

ifickle -- +++ +++ +

re2c +++ + ++ (+)

jflex ++ ++ + (+)

6RXUFH�&RGH
LZF�ILFNOH�IFO
Implementation of wc with ifickle.

 %{
 #!/usr/bin/tclsh8.4
 public variable nline 0
 public variable nword 0
 public variable nchar 0
 %}
 %buffersize 1024
 %%
 \n { incr nline; incr nchar 2 ; }
 [^ \t\n]+ { incr nword; incr nchar $yyleng ;}
 . { incr nchar;}
 %%
 if {[llength $argv] == 0} {
 puts stderr "usage wc-fickle inputfile"
 exit 0
 }
 if {[catch {open [lindex $argv 0] r} yyin]} {
 puts stderr "Could not open [lindex $argv 0]"
 exit 0
 }
 set sc [iwcfickle \#auto -yyin $yyin]
 $sc yylex
 puts [format "%7d %7d %7d %s" \
 [$sc cget -nline] \
 [$sc cget -nword] \
 [$sc cget -nchar] [lindex $argv 0]]
 close $yyin

:&�IOH[
Implementation of wc with java-jflex'''

 /* WC.flex */
 %%
 %public
 %class Wc
 %standalone
 %unicode
 %{
 int nchars = 0;
 int nwords = 0;
 int nlines = 0;
 %}
 %eof{
 System.out.println(" "+nlines+"\t"+nwords+"\t"+nchars);
 %eof}
 %%

 [\n] { nlines += 1; nchars += 1; }
 [\t]+ { nchars += yylength() ; }
 [^ \t\n]+ { nwords += 1; nchars += yylength(); }

ZF�FULWFO�WFO
WC with re2c, tcl and the critcl package

 /* File: wc-critcl.tcl */
 source ./critcl.kit
 package require critcl
 set cfile [file rootname [info script]].c

 if [catch {open $cfile r} infh] {
 puts stderr "Cannot open $cfile : $infh"
 exit
 } else {
 set ccode [read $infh]
 close $infh
 }
 critcl::ccode $ccode
 critcl::cproc lines {} int { return numline; }
 critcl::cproc words {} int { return numword; }
 critcl::cproc chars {} int { return numchar; }
 critcl::cproc myscan {char* filename} void { readFile(filename); }
 if {[llength $argv] != 1 || ![file exists [lindex $argv 0]]} {
 puts "Usage: [info script] "
 exit 0
 }
 myscan [lindex $argv 0]
 puts [format "%7d %7d %7d %s" [lines] [words] [chars] [lindex $argv 0]]

ZF�FULWFO�UH
re2c wc application ready for usage inside tcl applications with the critcl package.

 /* File: wc-critcl.re */
 #include
 #include
 #include
 #include
 #define EOI 319
 #define BSIZE 8192
 #define YYCTYPE uchar
 #define YYCURSOR cursor
 #define YYLIMIT s->lim
 #define YYMARKER s->ptr
 #define YYFILL(n) {cursor = fill(s, cursor);}
 #define RET(i) {s->cur = cursor; return i;}
 typedef unsigned int uint;
 typedef unsigned char uchar;
 int numline, numchar,numword= 0;
 typedef struct Scanner {
 int fd;
 uchar *bot, *tok, *ptr, *cur, *pos, *lim, *top, *eof;
 uint line;
 } Scanner;

 uchar *fill(Scanner *s, uchar *cursor){
 if(!s->eof) {
 uint cnt = s->tok - s->bot;
 if(cnt){
 memcpy(s->bot, s->tok, s->lim - s->tok);
 s->tok = s->bot;
 s->ptr -= cnt;
 cursor -= cnt;
 s->pos -= cnt;
 s->lim -= cnt;
 }
 if((s->top - s->lim) < BSIZE){
 uchar *buf = (uchar*) malloc(((s->lim - s->bot) + BSIZE)*sizeof(uchar));
 memcpy(buf, s->tok, s->lim - s->tok);
 s->tok = buf;
 s->ptr = &buf[s->ptr - s->bot];
 cursor = &buf[cursor - s->bot];
 s->pos = &buf[s->pos - s->bot];
 s->lim = &buf[s->lim - s->bot];
 s->top = &s->lim[BSIZE];
 free(s->bot);
 s->bot = buf;
 }
 if((cnt = read(s->fd, (char*) s->lim, BSIZE)) != BSIZE){
 s->eof = &s->lim[cnt]; *(s->eof)++ = '\n';
 }

 s->lim += cnt;
 }
 return cursor;
 }

 int scan(Scanner *s){
 uchar *cursor = s->cur;
 std:
 s->tok = cursor;
 /*!re2c
 [\t]+ {
 numchar += YYCURSOR-s->tok;
 goto std;
 }
 "\n" {
 if(cursor == s->eof) RET(EOI);
 s->pos = cursor; s->line++;
 numline++;
 ++numchar;
 goto std;
 }
 [!-~]+ { ++numword; numchar += YYCURSOR-s->tok; goto std; }
 [\000] { RET(EOI) ;}
 */
 }
 int readFile (char* filename) {
 Scanner in;
 int t;
 memset((char*) &in, 0, sizeof(in));
 in.fd = open(filename, O_RDONLY);
 if (in.fd == -1) {
 printf("error reading file: %s ", filename);
 return 1 ;
 }
 while((t = scan(&in)) != EOI){ }
 close(in.fd);
 return 0 ;
 }
 int main(int argc, char *argv[]){
 int ret ;
 if(argc != 2) {
 printf("usage: %s ", argv[0]);
 return 0 ;
 }
 ret = readFile(argv[1]);
 printf("\t%i\t%i\t%i\t%s\n", numline,numword,numchar,argv[1]);
 return ret ;
 }

This re2c code needs to be compiled in the following way:

 $ re2c wc-critcl.re > wc-critcl.c
 # (optional) compile command line application
 $ gcc -o wc-critcl wc-critcl.c
 # (optional) run command line application
 $./wc-critcl wc-critcl.tcl
 21 106 694 wc-critcl.tcl
 # tcl application
 $ tclkit wc-critcl.tcl wc-critcl.tcl
 21 106 694 wc-critcl.tcl
 $ wc wc-critcl.tcl
 21 106 694 wc-critcl.tcl

