

Collaborating applications: Tequila takes Tcl further

Jean-Claude Wippler
Equi4 Software
jcw@equi4.com

ABSTRACT
Tequila is a "middleware" kind of infrastructure written in pure Tcl, which makes it easy to write collaborating
applications. A first version has been extremely effective and succesful in two very different projects: a distrib-
uted telephone system testing system which has processed a quarter million daily events non-stop for over a
year, and a highly interactive multi-session chat and discussion board used in high-school collaboration re-
search. Several other projects have demonstrated the convenience of having such a generic and robust infra-
structure. The next generation of Tequila will be presented, aimed at providing an even richer foundation to
build on. It is heavily influenced by the first version as well as by GroupKit, a generic collaboration environ-
ment developed at the University of Calgary. Examples will be presented of how the new design simplifies
building collaborative applications, such as a basic chat system in just a few dozen lines of Tcl. Tequila sup-
ports structured data and automatic persistence, which has a major impact on how clients and servers are de-
signed. The basic components (pools, rpc endpoints, notifiers) will be presented to show how Tequila enhances
Tcl's strengths, i.e. seamless integration of the Tk GUI with networking and persistence.

Introduction
It can take a considerable amount of code to imple-
ment applications that combine a user interface, net-
work communication, and data storage. Even though
this is an area that is extremely well suited to Tcl,
there simply is a lot of ground to cover.

The Tequila package described here describes an
approach which has been used successfully in the
past, and which is now being re-implemented to ap-
ply the lessons learned so far as well as to better take
advantage of the tools available today.

We will first look at the specific requirements of col-
laborative applications, how the first version of Te-
quila (“T1”) dealt with these and what experience
was gained. Then a new design (“T2”) will be pre-
sented which cleans up the basic design, in order to
make the code more modular and extensible, and
extends it with “pools” as the basic concept for per-
sistent state and data exchange and “notifiers” to
handle change propagation within and between mul-
tiple collaborating application instances.

The last section will cover the details of Tequila, and
can act as demonstration of the new implementation.
It includes examples to illustrate the mechanisms and
idioms in practical use.

Collaborating software
There are a number of aspects that set collaborating
software apart from other types of software systems:

• Multiple processes, machines, platforms

• Everything happens all over the place

• Event-driven, asynchronous socket I/O

• Keeping running applications consistent

• Dealing with network failure at any time

First of all, collaborating software consists by its
very nature of multiple applications, running inde-
pendently, used by different people on workstations
which are connected via a network. In the current
design, Tequila is aimed at a configuration with one
or more long-running central servers, and any num-
ber of client processes logging in and out over time.

Collaborating applications must be prepared to deal
not only with changes coming via the GUI, i.e. due
to local interaction, but also with state changes re-
ceived via the network. Collaborating applications
must be event-driven for both user interaction and
network activity, to maintain a responsive user expe-
rience. They must also be very careful about consis-
tency – so that inevitable latencies between the dif-
ferent clients do not cause confusion, or worse: in-
consistencies across clients whereby different people
end up working with different versions of the data.

Lastly, collaborating software has to deal with less-
than-perfect communication channels, even if the
hardware it runs on is reliable. Networks occasion-
ally stop working, so loss of connectivity must be
dealt with. In the general case, this can be a very
complex requirement.

Tcl is a good fit
The Tcl scripting language, and the Tk GUI toolkit
are an extremely good fit for collaborating software
for a number of reasons:

• Event-driven I/O (fileevent)

• Everything is a string, easy to send around

- 1 -

• Traces for managing changes

• Platform independence

• Deployment, via Tclkit

Together, these features combine to create a software
development environment which is extraordinarily
well-suited for networked visually rich collaborating
applications, in fact. It takes perhaps a dozen lines
of code to implement a basic server, and about the
same amount of code again to let clients communi-
cate with it.

The total code needed to implement Tequila is under
a thousand lines of pure Tcl. No C-coded extensions
are needed (beyond what Tclkit includes) to create a
system which handles the user interface, networking,
and storage of data. The performance has turned out
to be excellent, no doubt due to the fact that the level
at which network activity takes place is very high.

It should also be mentioned that Starkits, the de-
ployment technology which is now so common with
Tcl/Tk 8.4 and particularly the Tclkit self-contained
application runtime for Tcl/Tk, have made deploy-
ment of Tcl applications trivial. In the case of col-
laborating applications, this is an essential ingredient
for success.

Early case study
The original idea for Tequila came from a commer-
cial project implemented in the course of 2000 and
2001. The system is used to continuously test the
properties of a telephone network by making large
numbers of test calls and collecting the results.
Some details:

• Long-lived “dumb” central server

• Central process driving modem banks

• A scheduler drives the main workload

• Custom requests are piggy-backed on top

• All data stored centrally

• Interactive clients on Windows and Solaris

• Simple login/password authentication

• Client “loads itself” over the net on startup

• Watchdog process restarts server if it fails

It was decided early on that the networking and stor-
age design would be developed separately, and tested
with an elaborate simulation harness. This became
Tequila version 1, although the core was in fact re-
coded twice from scratch, as more experience was
gained.

This system was extremely successful:

• Dimensioned to handle 250 dialers on an Ultra-
SPARC, the system was in fact able to handle 500
dialers in continuous simulation mode (which
placed a far greater load on the system) from a
measly laptop running Linux.

• As part of a very extensive pilot test, the server has

stayed “up” for 18 months without a single failure,
making roughly 250,000 test calls daily.

• Software changes do not require a server restart,
the scheduler and modem-bank processes can both
be stopped and restarted in mid-flight.

• Client deployment consisted of a single Tclkit ex-
ecutable plus a Starkit (the Tclkit + Starkit de-
ployment model were used in a production setting
for the first time, although it was still called a
“scripted document” at that time).

• The core system became smaller and simpler as
development progressed, a clear sign that the de-
sign concepts used were working out properly.

• Development and testing, and eventually also de-
livery of the final product took place over three
continents. ISDN-based client access turned out to
be workable, even though the system was only
designed for LAN use.

One interesting observation is that all of the above
was achieved with a beta version of Tcl/Tk (8.2b2, I
think). So much for the notion that “beta” must be
buggy!

Tequila T1
The first implementation will be called “T1” from
now on, to distinguish from the newer T2 design
presented later on in this paper.

T1 is based on a really simple API: arrays.

The idea is that client applications “attach” one or
more global arrays to Tequila, and then automatically
any changes made to them anywhere will propagate
to all other clients via background network commu-
nication.

This is in fact exactly what T1 does. It relies very
heavily on Tcl traces to detect changes to any at-
tached array, and then takes care of sending and re-
ceiving such updates. Traces are then also used by
the application to trigger processing and user inter-
face updates when any item in an array changes due
to incoming network messages. These changes can
include addition and deletion of array elements, not
just modification of existing ones.

Persistent storage comes for free. This rather sur-
prising benefit comes from the fact that all data re-
sides on the server, so as long as a server stays up,
nothing needs to be done on the client side to store
information. Every time a client starts up, it receives
the relevant state from the server. In a way, the
server defines a permanent workspace, and clients
simply get to see more or less of that state as they
attach their arrays.

However, given that a server could fail, such an “all
in-memory” approach as described approach is evi-
dently a bit too risky to build serious applications on.
For that reason, T1 includes server-side logic to store
array contents on file: either as views in a Metakit
database or as individual files in a directory. The

- 2 -

latter can be convenient to see what the state is while
a server is running, since all state of such arrays can
easily be inspected from the command line.

There is a special array called “tequila” to which
clients can attach. It contains one entry for each cur-
rently connected client. This allows clients to dis-
cover which other clients are running, and to detect
their demise by setting an unset trace on the tequila
array.

A simple lock mechanism was added later on by
Steve Landers, to allow clients to synchronize their
actions. This allows a client to claim a data item so
that others will not alter it while the item is displayed
and being edited, for example. All locking is advi-
sory: all parties must follow the proper convention,
and refrain from altering locked items.

Experience with T1
One of the must surprising outcomes of T1, was to
see just how well it fits into Tcl. Applications need
to be written in a certain style, but apart from this
nothing changes between stand-alone applications
that do not use Tequila and applications that do. The
only thing that changes is on startup: decide which
arrays are shared, and attach them as part of the ini-
tialization step.

The fact that arrays “simply persist” is a benefit that
is hard to over-estimate. Coding can now deal with
the structure of data and the effect of changes on that
data, with no attention at all to loading or saving
things. This works, because all previous state
changes sort of get applied automatically on startup,
so all an application has to do is set up the user inter-
face, prepare the traces that act on changes, and then
attach the array. As soon as the connection is estab-
lished, the network will send all state, adjusting the
user interface through the traces.

Performance is surprisingly good. It turns out that
Tcl, even though scripted, has absolutely no trouble
keeping up with network activity and traces over a
LAN. Due to the asynchronous design, many delays
drop beneath the horizon. This is even the case for
locally generated changes, which normally also need
to make a round trip to the server to be applied con-
sistently. The trick to achieve good performance is
to design in such a way that latencies have limited
impact. Bandwidth can be more or less ignored
(within reason), since the level of communication is
very high, i.e. the rate of messages and their size
often remains quite limited.

A design decision which has paid itself back in gold,
is the choice of using a generic Tequila server, and
keeping all application-specific business logic iso-
lated in clients and secondary “worker processes” –
clients which run on the server to perform tasks, but
with no user interface. The generic server has al-
lowed creating a system whereby the centerpiece is
rock-solid from the very start, and requires almost no
debugging as the rest of the application is imple-

mented and extended.

Not all is peachy with T1, however. One unforeseen
issue has been that distributed code and especially
traces are a nightmare to debug, even with ample
logging in the server. The timing variations make it
next to impossible to reproduce problems related to
order-of-events, i.e. race conditions.

Another problem with T1 is that it does not scale that
far when arrays contain a lot of data. The reason for
this is that all data must be sent across to each client
as the array is attached, leading to potentially long
startup delays. Furthermore, being arrays, all data in
the client ends up being memory resident. These
issues can be alleviated up to a point by carefully
splitting data across multiple arrays, and only attach-
ing a subset. In T1, an extra escape hatch was built
into Tequila, allowing a procedural get/set access
mode for data, i.e. foregoing attached arrays for
some cases, such as activity logs.

And lastly, Tequila grew out of a single project, so its
features were tuned somewhat to that. One limita-
tion is that the transport layer was built-in as being
plain sockets only, using dedicated ports. Other uses
such as an HTTP wrapper vie port 80 were consid-
ered but never implemented. Neither was a more
secure session layer, such as SSL.

Subsequent uses in other projects have shown that
although Tequila provides a very effective model for
collaborating software, it does have limited uses.
Sometimes, a more traditional RPC-like mechanism
can make things simpler still, rather than having to
shoehorn the code into changes to attached arrays.

Beyond T1
In January 2005, a new project called “Stargus” pre-
sented a chance to revisit the whole design and struc-
ture of Tequila, with the opportunity to take things a
bit further.

The following aspects were investigated:

• Improved data-model support

• Far better scalability

• Support for authentication & encryption

• Client-side caching and re-connects

Many of these capabilities are found in the GroupKit
package, which was found too elaborate and com-
plex for T1 in 2000/2001, but which does offer a
very rich set of concepts and implementation solu-
tions for most of the above aspects. The one thing
lacking in GroupKit is persistence, and as T1 has
shown that really is a very useful and effective part
of Tequila.

As a result, and drawing on the experience of Mark
Roseman, GroupKit’s principal architect, it was de-
cided to re-implement Tequila, in a design much
closer to GroupKit’s, while adopting as much as pos-
sible from T1. The result is Tequila T2, described
here.

- 3 -

Tequila T2
T2 is a complete rewrite. It was written in a very
modular fashion, so that individual parts can be ex-
tended or even replaced later on, as needed.

This is one of the situations where an object system
really shines. It is trivial to extend a system when its
main components are object oriented, regardless of
whether the OO mindset is used in the rest of the
application. For practical reasons, IncrTcl was se-
lected for T2 – with the idea that any OO system
could be substituted later, if the Tcl community ever
gets its act together in designating one OO system as
“the one”.

IncrTcl is part of every Tclkit binary, the deployment
system of choice for applications such as these. It is
stable, documented, and fast.

For persistence, the Metakit database library is used.
There are a number of reasons why this is a good fit:

• On-the-fly restructuring (adding properties)

• Compact both on file, and in-memory

• Easy to send serialized snapshot over a socket

• Included in Tclkit, stable

Neither IncrTcl nor Metakit are essential ingredients
for Tequila, they could be replaced when other pack-
ages are available which are more suitable in some
sense.

A side-effect of using components which are present
in every build of Tclkit, is that Tequila can be used as
is on every platform for which there is a standalone
Tclkit executable, which is several dozen by now.
Since ActiveTcl also contains all the necessary pack-
ages, that too is an option.

Anatomy of T2
Tequila T2 consists of the following key compo-
nents:

• Pools, as the logical building blocks of data

• RPC endpoints, used for all communication

• Notifiers, a generalized version of traces

Each of these will be covered in detail in the next
sections. Together these form a package called, un-
surprisingly, “tequila” which is a single Tcl-only
script that needs to be included in each collaborative
application, both clients and servers. There is a sim-
ple generic server which can be used out of the box
for simple cases, or can be used as template and
starting point for a more sophisticated system. And
lastly, there are a number of examples to illustrate
various aspects of T2.

At this stage, T2 is fully functional, but it has not
been used “in anger”: there are no large-scale pro-
duction systems based on T2 so far (April 2005).

Pools
Pools are the central concept on which applications
get built. A pool contains one or more named collec-
tions of data, which automatically persist and get
shared with all clients connecting to the same pool
(via the server – T2 only addresses centralized client/
server topologies at this stage).

A “collection” in turn, is a tabular data structure: it
has rows, identified by a key, and named attributes.
You can think of a collection as a table. Simple ta-
bles might contain just a key and a value, in which
case they are very much like Tcl arrays, or they
might contain more attributes. All values in a collec-
tion are strings and can – as usual in Tcl – contain
anything.

Pools represent global state. In MVC (model, view,
controller) parlance, pools are the model. Pools will
normally persist. The structuring of pools into col-
lections is a way to bring different data structures
together – each collection can have a different set of
attributes, whereas all rows within a collection have
the same set of attributes.

In the simplest case, you only need a single pool, so
the basic design effort is all about deciding what col-
lections you need, and what the key and attributes of
each should be.

Here’s how to create a new standalone pool:

 tequila::pool mypool

This produces a new command, named “mypool”.
From there, it is easy to create a collection and add a
row to it:

 mypool set mycoll.x value y

This creates the collection “mycoll”, and adds a row
with key “x” and an attribute named “value” set to
“y”. Fetching the row again uses the “get” sub-
command:

 puts [mypool get mycoll.x]

You can also find out the keys of all rows in the col-
lection:

 puts [mypool keys mycoll]

Or any other property for that matter:

 puts [mypool values value]

One useful subcommand for debugging is “dump”, it
prints the first few rows of every collection in a pool.

There are several more subcommands. The idea is
that collections are like an “array with named col-
umns”, with “rows” as entries, and that these arrays,
rows, and attributes are created on-the-fly when a
value is set.

As described so far, pools are merely local. To make
them shared we need to tie them to “endpoints”.

- 4 -

RPC endpoints
An “RPC endpoint” is perhaps best described as
“this half of a connection”. It is the entrance of the
tunnel leading to a remote counterpart, i.e. for a cli-
ent it is the link to a server.

The following discussion is geared towards sockets,
although other types of endpoints could be created.
The startup sequence is bound to be different, but -
once set up - end points are simply objects which
must respond to a certain API.

Endpoints are asymmetric (just as sockets are). To
establish a connection, a server somewhere must
create an endpoint and specify what port number to
use:

 set s [tequila::endpoint –server 8291]

The above creates a server socket, listening on port
8291. Once that is available, clients can connect to
that endpoint using something like:

 set c [tequila::endpoint \
 server.domain.net 8291]

Once a session has been established, we can tie a
pool to them. This is done when the pool is created,
so that its previous state can be restored right away.
Here’s an example where “mypool” is associated
with a pool of the same name on the server:

 tequila::pool mypool $c

Keep in mind that all network events are asynchro-
nous and processed in the background, i.e. at idle
time. The above does not instantly fill the pool, it
just ties things together so that everything happens
later on, when the application setup has been com-
pleted and it starts waiting for events.

Notifiers
As it stands, the above is sufficient to make pools
stay in sync across multiple clients. The one missing
link is that an application wouldn’t find out about
any of these changes, so it’d be rather boring.

That is where notifiers come in. A notifier is an ob-
ject where apps can subscribe to be notified of
events. The prime user of this mechanism is the pool
– every pool includes a notifier, so that changes to
the pool can be associated with application scripts to
execute.

The notification mechanism is based on named
“events”. Applications can “bind” to an event and
cause it to execute a certain script, or they can bind
to a range of events by using “*” and “[…]” and “?”
wildcards.

Pools define various events, such as:

• connected – the pool has been initialized

• disconnected – connection has been lost

• collection.add / .change / .delete –
 a row has been added/changed/deleted

• collection.attribute –
 a change to specified attribute

The scripts that get evaluated when an event fires can
obtain additional information about the event
through a mechanism that is identical to Tk: event
specifiers, i.e. codes in the script starting with “%” –
these get replaced before the script is actually evalu-
ated. Event specifiers are essentially a general way
of passing arguments from an event producer to all
event consumers.

In the case of pools, the following event specifiers
are available:

%C – name of the collection

%K – key value

%E – full event name

%R – row number

Example of use:

 mypool bind *.add \
 { puts “added key %K to coll %C” }

Not all specifiers are meaningful in all types of
events (%C, %K, and %R are not set in connect/
disconnect events, for example). Some events may
define more specifiers – see the documentation for
details.

Keep in mind that notifiers are not limited to being
used by pools. The basic rule is just that event pro-
ducers and event consumers must agree on consistent
conventions.

Putting the pieces together
In the basic scenario, the following steps must be
taken:

• A server must be started, on a well-known host and
port. The server usually stays running for a long
time, and runs unattended.

• Each client starts by creating a client-side endpoint
connecting to that server.

• Next, clients set up one or more pools, and tie
them to this end point. The convention is for a
server to have a “system” pool, and in it a collec-
tion called “tequila”.

• For simple uses, clients can set up their end of the
“system” pool and create the collections they need
inside that pool.

• If multiple pools are required, then the server must
either set up all pools, or be prepared to create
such pools as needed when clients ask for them.

• Once pools exist, clients proceed by creating a set
of bindings that determine what happens on
changes to collections in the pool(s).

• Lastly, each client enters the idle loop, starting the
phase where connections will become active and
messages get sent around between the Tequila cli-
ents and the Tequila server.

- 5 -

From here on, the client application becomes an
event-driven mechanism, dealing with user interface
events as usual (with Tk) and dealing with network
events to manage the sharing of state and the propa-
gation of changes to that shared state.

An RPC example: chat
One of the simplest networked examples is a chat –
people type lines into an input area, and everyone
gets to see the lines when RETURN is pressed.

The code for this example is in Appendix A. It illus-
trates the absolute basics of Tequila:

• Setting up the Tequila package

• Connecting to a common server

• Sending lines to the server

• Responding to incoming lines

Although the code is very simple to read and may
help to get started, it also is seriously flawed: the
design used in this chat application is in fact pre-
cisely the wrong approach most collaborative appli-
cations…

The reason is that the chat works in terms of actions
(i.e. send this line to everyone). This breaks down
when you start thinking about clients connecting and
disconnecting at various times. When that happens,
you often want to be brought up to date to see the
same state as what others see. This brings a sense of
“being” in one place, and collaborating on a common
project.

With purely event-driven exchanges, you’d have to
think in terms of replaying changes to clients who
join later. But as we shall see, there is a much easier
way to accomplish the same thing.

Model-View-Controller
From Smalltalk comes the concept of splitting the
work in an application into three distinct tasks:

• Model = the state, think “documents”, “projects”,
and so on.

• View = what you see on the screen (or the browser,
or even reports on file or paper). There can be
more than one view on the model. There can also
be a model without a view – i.e. when you are not
displaying it.

• Controller = the way to deal with input actions,
from point the mouse, to scrolling, to entering data
and pushing buttons.

With collaborating applications in general and Te-
quila in particular, these aspects of a design come
back in full force. One reason being that there will
be potentially many views, and many controllers.
But in general, what you want is that everyone works
with a consistent copy of the same common model.

First the bad news: there are limits to that consis-
tency. There is no way one can automatically resolve

the situation when people perform conflict actions at
exactly the same moment in time. It’s a bit like Hei-
senberg’s uncertainty principle: either two people are
next to each other and acting in sync, or they are
remote and have to accept imprecise knowledge of
what the other is doing at that very same moment in
time.

The good news is that this need not be a problem.
The simplest solution is to serialize actions via one
common server. The server will, by the fact that it
processes work sequentially, serialize incoming re-
quests in order of arrival.

This does not prevent unintended clashes. It is as
with long-distance phone calls: when delays are large
(as in satellite-based sessions), you occasionally end
up speaking at the same time as the other party.
Right thereafter, you both realize that this won’t
work, stop, and retry after a short while. Normal
courtesy and occasional extra retries take care of the
rest.

A similar mechanism is used in Tequila. Actions are
transmitted to the server, which then broadcasts it to
all clients – including the originating one. The result
is that all clients receive all actions in the same order,
and can maintain a 100% consistent state. In the
case of accidental conflicting actions, one of them
will end up preceding the other, all parties will see
the result in the same way, and once they realize it
they can react by undoing or repeating their action.
That too will be sent to the server, and all clients see
the corrective actions.

By sending all requests to a central server, a single
consistent model is maintained. Clients can then
deal with views by themselves, and never worry
about synchronization. The worst that can happen
are network delays, which is unnoticeable in the case
of geographically remote clients (even a few seconds
would usually go undetected!).

The controller side of all clients is synchronized by
the fact that they cause no local effect but merely get
sent to the server to wait in line and be accepted.

There are many issues related to synchronization that
are beyond the scope of this paper. Suffice to say
that when the user interaction is designed with poten-
tial latency in mind, the whole server-based approach
works remarkably well. No nasty race conditions, no
tricky recovery mechanisms are needed.

It’s all about the model
The key to designing collaborating applications with
Tequila is to focus almost exclusively on shared
state, and to avoid “telling everyone what to do”.

This is why the above chat example was in fact not
such a good idea. If coded naïvely, the chat would
not even present a consistent log to every client.
This would be the case if clients decided to add their
own entries to their log and only broadcast the en-
tries to all the other clients.

- 6 -

In the code in appendix A, the chat avoids this prob-
lem. It uses the server to serialize, by sending a line
to the server, which then broadcasts it to all clients,
including the originating one. Once that request
comes back in, the originating client adds it to the
log window. Just as all other clients do, and in pre-
cisely the same order.

What the chat does is use the central server to serial-
ize all events. Each client then maintains its own
copy of the model. Note that the server does not do
anything with the requests, other than sending them
around.

In other words, the chat relies on all clients to dili-
gently follow all events and each manages a replica
of the data model. This breaks down for clients who
join later (or drop off and have to reconnect for any
reason).

That’s where Tequila’s “pools” come in. They are
the model and reside on the server. When a client
connects to a pool, it first gets a copy of the exact
state on the server. After that, it receives all changes
to the pool, using the same broadcast mechanism as
before.

Pools solve the problem of connecting at arbitrary
points in time. Due to their shared design, pools also
manage all further changes – using RPC, but taking
care of everything transparently. With pools, you are
encouraged to think in terms of state, not actions!

In a way, pools are Tequila’s way of using a model.
Distance and connection re-establishment are solved.

A better example: rooms
Appendix B contains the code for a more elaborate
example, written by Mark Roseman. It represents a
groupware system, whereby clients connect to a
server with “rooms”. Each room has some state,
each client can view that state as well as modify it.
Any client can also create rooms themselves – the
system starts out with no rooms at all.

The model here is very simple and clear: each room
is a pool. There is a special pool called “system”,
which is where clients can find a list with the names
of all rooms. A simple explorer-style GUI lets you
add to that list, or select an existing room from it.

When you select a room by double-clicking, the
right-hand pane shows the room. Rooms have a ran-
dom color assigned to them at creation time (just so
it’s easy to recognize different rooms). Clicking on a
room adds a timestamp in the position that was
clicked.

Needless to say, every client can do this, and every
client sees changes in real time.

This example is illustrative of how designs with Te-
quila work:

• Each room is a pool – clients only deal with one
room at the time. Changes to others don’t concern
them (and are not sent).

• The design is completely in terms of state – there
are no explicit RPC calls in the rooms demo. The
code works the same regardless of which and how
many other clients are around.

• Connects and re-connects are easy – each time a
room is selected, the client gets the current state
(i.e. a copy of its pool on the server). After that, it
automatically sees all changes.

The transparency of the network should become
clear when you realize that an application can be
developed standalone, by using local pools. All it
takes to turn this into a networked system later on is
to alter the way pools are initialized (i.e. associated
with a server).

Current status
Tequila is currently called T2 (it’s at version 2.02 at
the time of this writing). That reflects the fact that it
is a second-generation implementation, taking the
best from the original T1 as well as from GroupKit.

T2 has not been used in a production setting. It has
passed a certain amount of testing, but there are still
some design changes underway – such as being able
to use multiple pools on a server via single RPC
channel.

The basic concepts of pools, RPC endpoints, and
notifiers are stable, however. This design is expected
to stay essentially as is from now on.

Performance appears to be good, judging by a few
timing experiments. All the code is in pure Tcl, so
there will be considerable room for improvement if
bottlenecks do show up at some point. In GroupKit,
“environments” (a more elaborate concept on which
Tequila’s pools are based) were coded in C, and so
were notifiers, but so far Tcl has worked out well.

The design of collections (i.e. the tabular data struc-
tures which can be stored in pools) is relatively com-
plete, but a few loose ends remain with respect to
positional access and inserting/moving/deleting
rows.

Next steps – T3
T2 is really an intermediate phase to transition away
from T1’s array-centric design and prepare for a
number of more advanced features:

• Scalability – by using collections, the need to keep
all data in memory (as with arrays) is gone. T2
introduces pools and collections, and maps them to
Metakit sub-views. This is a start to maintaining
data in memory-mapped files, i.e. letting the oper-
ating system do what it does so well: decide on
when/how to page data in and out of RAM, trans-
parently.

• Client-side caching – a major limitation of T1 and
T2 is that all data in an array/pool is sent to the
client when it connects. This does not scale well.
T1 had some hooks to avoid the copying, the price

- 7 -

being increased application complexity. T2 was
designed to eventually support a cache, so that the
client side only need fetch changes – often a frac-
tion of the complete dataset.

• Transport independence – T2’s RPC objects make
it possible to insert extra layers or even replace
them with something entirely different. This can
be used to add compression and/or encryption to
the communication channel between clients and
servers

• Multiple servers – T2 makes a start with support-
ing multiple servers. These can be used for
redundant/fail-safe scenarios, as well as for main-
taining pools in separate locations (for security, or
intranet vs. public).

• Database gateways – the collections in T2 support
a rich table-like structure, whereas T1 only sup-
ports key-value associative arrays. This can be
used to create rich gateways to relational databases
via a Tequila server.

• Tools – with a generic framework such as Tequila,
it is worthwhile to create generic tools that can be
used by different applications, both during devel-
opment and in released code. Think of auditing,
debugging/tracing, web interfaces, and report-
generation.

The plans for T3 have only just started. A number of
the issues mentioned above will be addressed, but
since Tequila is 100% open source, there is nothing
to prevent anyone from taking what they like and
extending it in ways they need. Preferably in such a
way that others can benefit as well, of course.

Looking further
Tequila is an exciting mix of ideas and trade-offs.
On the one hand, it completely bypasses conven-
tional approaches such as the use of N-tier client/
server databases and the use of HTTP and XML so-
lutions. Instead, Tcl’s strengths are exploited in sev-
eral ways:

• Using Tcl as protocol over-the-wire

• Using asynchronous file events for all I/O

• Using notifiers, as an equivalent for traces

• Using Metakit for data storage

• Using Tclkit and Starkits for deployment

And of course: having Tk around the corner for
building user interfaces on top of all this.

For people who know Tcl, the above are probably not
very exciting, but it’s hard to overestimate the impor-
tance of having all these capabilities come together
in the way Tequila uses them. Not to mention that
T2 is well under 1000 lines of code so far – offering
proof that all the components really are working to-
gether to form a powerful way of developing col-
laborating applications.

But the promise of T2 is in fact a different one: if

you ignore all the details of storage and networking
and GUIs (as you can with Tequila + Tk), then what
remains is the way pools and collections become the
(structured!) “data backplane” of an application, re-
gardless whether it is a single standalone script or a
large multi-process / multi-site distributed system.
What remains, is the application’s core itself, and the
business logic that really defines what is being done.

With T3, the hope is that this potential to simplify
software development with Tcl will be exposed and
exploited further, much further eventually. The
change in mindset needed to accomplish this, is that
everything is about state and consequences of state
change. As Tequila proves, location, persistence,
sharing, and application launches & exits can be-
come details that will need much less attention than
before.

Conclusion
When started in 2000, Tequila immediately proved
itself by dramatically simplifying the application it
was initially designed for. By dealing with the gen-
eral issues in a generic way, a surprisingly effective
separation of (complex) application logic as well as
(complex) collaboration logic was achieved. As a
result, Tequila (T1) has been used in a number of
projects since, with considerable productivity gains –
it helped get software projects out the door faster,
and it came with a solid set of features, tested and
ready to build on, and with.

The current T2 re-implementation has been com-
pleted. It introduces pools, RPC endpoints, and noti-
fiers. It also introduces collections as a more general
way of managing structured data. The API is starting
to look good, in that it remains relatively simple yet
offers all the benefits that T1 had – as well as open-
ing up the path to more advanced features such as
client-side caching.

T3, the next phase of this project has only just
started. It is likely to leave much of what T2 does
alone, and simply extend on what there is to imple-
ment additional functionality.

Acknowledgments
The design of T2 was shaped profoundly by discus-
sions with Mark Roseman, GroupKit’s principal
author. As a result, it appears to be simpler (and
leaner) as well as more flexible. The holy grail of
collaborating software is probably the idea of tying
networking, persistence, and the graphical user inter-
face together in as automatic a framework as possi-
ble. If T2 succeeds, it will be mostly due to Mark’s
involvement and experience (and if it fails, yours
truly did 95% of the coding, so you’ll know who to
blame…).

I would also like to thank Steve Landers, for partici-
pating in many of T2’s discussions, and for always
coming up with good ideas and questions.

The original work on Tequila would not have been

- 8 -

possible without Steve Landers and Cameron Laird,
who worked on the project where Tequila was origi-
nally born. Between us, we came up with the whole
idea and together we carried it through to make it a
pretty effective product. I’d like to thank Larry
Blasingame for making some of the toughest go-
ahead decisions ever by placing so much trust in a
bunch of excited software engineers, halfway across
the globe.

And last but not least, I’d like to thank Mike Doyle
and Eolas Technologies Inc, for funding my work
done on T2 and for providing an exciting opportunity
to take Tequila further for everyone, by supporting
its public release as open source software.

References
Tequila home – http://www.equi4.com/tequila.html

The Tcl'ers Wiki - a collaborative web site for the Tcl
community, http://wiki.tcl.tk/

GroupKit by Mark Roseman, this was part of the
GroupLab project at the University of Calgary – now
released independently, http://www.groupkit.org/

IncrTcl – Object oriented extension for Tcl,
http://incrtcl.sourceforge.net/

Metakit – embedded database extension for Tcl
(Mk4tcl), http://www.equi4.com/metakit.html

Tclkit – a standalone runtime for Tcl/Tk, includes
IncrTcl and Metakit,
http://www.equi4.com/tclkit.html

© 2005 Jean-Claude Wippler <jcw@equi4.com>
[http://www.equi4.com/docs/tcl2005e/tequila.pdf]

- 9 -

Appendix A – chat demo

Tiny chat system: assumes generic tequila server is running (port 18396)
Clients broadcast their msgs to everyone currently connected to the server.

package require Tk
package require tequila 2.02

set rpc [tequila::rpc localhost 18396 -command chatrecv]

grid [text .t -width 40 -height 10 -yscrollcommand ".s set"] \

 -column 0 -row 0 -sticky news
grid [scrollbar .s -command ".t yview"] -column 1 -row 0 -sticky ns
grid [entry .e] -column 0 -row 1 -columnspan 2 -sticky we
bind .e <Return> sendChat

proc sendChat {} {
 $::rpc send to all chatmsg [.e get]
 .e delete 0 end
}

proc chatrecv {conn data} {
 if {[lindex $data 0] eq "chatmsg"} {
 eval $data
 }
}

proc chatmsg {msg} {
 .t insert end $msg\n
 .t see end
}

- 10 -

Appendix B – rooms demo
client.tcl:

package require Tk
package require tequila

set rpc [tequila::rpc localhost 18396]
tequila::pool system $rpc

frame .rooms
button .rooms.new -text New -command newRoom
listbox .rooms.l -yscrollcommand ".rooms.sb set"
scrollbar .rooms.sb -command ".rooms.l yview"
frame .room
canvas .room.c -width 400 -height 400 -background #ccc
grid .rooms -column 0 -row 0 -sticky ns
grid .rooms.new -column 0 -row 0
grid .rooms.l -column 0 -row 1 -sticky news
grid .rooms.sb -column 1 -row 1 -sticky ns
bind .rooms.l <Double-1> enterRoom
grid .room -column 1 -row 0 -sticky news
grid .room.c -column 0 -row 0 -sticky news
grid columnconfigure . 1 -weight 1
grid rowconfigure . 0 -weight 1
grid rowconfigure .rooms 1 -weight 1
grid columnconfigure .room 0 -weight 1
grid rowconfigure .room 0 -weight 1
wm title . "<No Room>"

proc nextid {} {
 if {![info exists ::nextid]} { set ::nextid 0 }
 expr {([system cget -clientid]+1)*1000000 + [incr ::nextid]}
}

system bind rooms.* roomsChanged
system bind connected roomsChanged

proc newRoom {} {
 set roomid [nextid]
 $::rpc send poolmanager create room$roomed
 system set rooms.$roomid name "Room $roomid" pool ::room$roomid \
 backgroundcolor [format "#%02x%02x%02x" [expr int(rand()*256.0)] \
 [expr int(rand()*256.0)] [expr int(rand()*256.0)]]
}

proc roomsChanged {} {
 .rooms.l delete 0 end
 foreach i [system keys rooms] {
 .rooms.l insert end [system get rooms.$i name]
 }
}

proc enterRoom {} {
 set idx [.rooms.l curselection]
 set roomid [system get rooms!$idx key]
 if {[info exists ::currentroomid] && $roomid == $::currentroomid} return
 if {[info exists ::room]} {
 .room.c delete all
 .room.c configure -background #ccc
 bind .room.c <Double-1> {}
 $::room destroy
 }
 set ::currentroomid $roomed
 set ::room [tequila::pool room$roomid $::rpc \
 -servername [system get rooms.$roomid pool]]

- 11 -

 $::room bind connected roomEntered
}

proc roomEntered {} {
 wm title . [system get rooms.$::currentroomid name]
 set color [system get rooms.$::currentroomid backgroundcolor]
 .room.c configure -background $color
 bind .room.c <Double-1> { clickWorkArea %x %y }
 $::room bind notes.* { noteChanged %K }
 foreach i [$::room keys notes] { noteChanged $i }
}

proc clickWorkArea {x y} {
 $::room set notes.[nextid] x $x y $y text [clock format [clock seconds]]
}

proc noteChanged {key} {
 if {$key==""} return
 foreach {x y text} [$::room get notes.$key x y text] break
 if {[.room.c find withtag note$key] eq ""} {
 .room.c create text $x $y -text $text -tags note$key
 } else {
 .room.c coords note$key $x $y
 .room.c itemconfigure note$key -text $text
 }
}

server.tcl:

package require tequila

class poolMgr {
 variable rpc
 method constructor {rpc_} {
 set rpc $rpc_
 }
 method create {name} {
 uplevel #0 ::tequila::pool -server $name $rpc
 }
 method connect {name clientname} {
 # later use this instead of connectPool
 }
}

mainline
set rpc [tequila::rpc -server 18396]
poolMgr poolmanager $rpc
[$rpc cget -receiver] allow poolmanager
tequila::pool -server ::tequila::system $rpc -file try.db
[$rpc cget -receiver] allow tequila::connectpool
catch { vwait forever }

- 12 -

Tequila
Jean-Claude Wippler

The Netherlands

Let’s build a...
chat system

whiteboard

backdoor?

multi-player game

network stats collector

home entertainment center

PBX
wlan admin tool

groupware app

MP3 jukebox

custom intranet utility

Wiki
data backup manager

Collaboration

people - any time, any place

events everywhere

consistency

network failures

Overview

clients connect to permanent server

focus on star-shaped topology for now

must be multi-platform & responsive

DB

Tcl/Tk

an absolutely perfect match!

event-driven I/O

everything is a string - EIAS!

platform independence

Starkit deployment

Tequila

general-purpose server

simple protocol: count + arg list

data stored on server:

array = dir of files, or Metakit

client + server < 600 lines of Tcl

Version 1

shared global arrays:

connect

attach

traces

events

vwait

 package require tequila

 tequila::connect here.com 20000
 tequila::attach mydata

 set mydata($key) $value

 puts $mydata($key)

 foreach x [array names mydata] {
! ...
 }

Let’s chat

Look ma, no hands
package require Tk
package require tequila

tequila::connect localhost 20000
tequila::attach data

text .t -width 40 -height 10 -yscrollcommand “.s set”
grid .t -column 0 -row 0 -sticky nwes
grid [scrollbar .s -command “.t yview”] -column 1 -row 0 -sticky ns
grid [entry .e] -column 0 -row 1 -columnspan 2 -sticky we

bind .e <Return> {
! set data([pid]) [.e get]
! .e delete 0 end
}

trace add variable data write chatrecv

proc chatrecv {a e op} {
! .t insert end “$e: $::data($e)\n”
! .t see end
}

POTS network test

POTS = Plain Old Telephone System

central site: 250,000 modem calls/day

driven by periodic scheduler

engineers add (big!) ad-hoc tests

Windows & Solaris clients

built 100% with Tcl/Tk (Tclkit) & Tequila

It works!

plenty of performance

ran for 18 months, no restart

Tk-based custom client app suite

organically grown by 3 programmers

Tequila was a spin-off, re-used later

The good

forget about distribution details

persistence is automatic

the API is trivial

split & merge sub-tasks as needed

The bad

arrays are hard to virtualize:

array names

all data must be present

single server

weak data structures

lack of RPC

The ugly

sends all data on attach:

does not scale

debugging traces is messy

reentrant traces are lost

no reconnect / recovery

The Fix

richer data structures: pools

transport layering: rpc endpoints

alternative to traces: notifiers

client-side caching: Metakit DB

implemented in phases: T2, then T3

Tequila T2

learn from T1 and from GroupKit:

keep it simple

keep it simple

keep it simple

only requires Tclkit or ActiveTcl

code is still 100% Tcl, so far

The big picture

connect to your server via an endpoint

keep your data in one or more pools

shared pools are kept in sync by Tequila

changes to pools generate notifications

use bindings to act on incoming changes

your own changes also come that way

MVC

separation of responsibilities:

Model = the “state” of your app

View = ways of presenting it

controller = effects of user actions

very effective for distributed apps

Pools

a pool is a logical group of collections

a “collection” is a table with data:

by key or by row#:
multiple attributes:

represents a “sharable unit”

key value

John Berlin

Mary London

Bill Paris

key location

John Berlin

Mary London

Bill Paris

since

1989

1956

2001

#2

#0

#1

RPC endpoints

the interface “in & out of the tunnel”:

client usually has 1, server has many

new: can be shared for multiple pools

Machine BMachine A

pool pool

TCP/IP

Endpoint Endpoint

Notifiers

generic event mechanism:

! ! $notifier bind <event> <script>
! ! $notifier notify <event> <info>

like Tk’s bind, but for general use

arbitrary “%x” expansions

bind to wildcard events, using ? and *

each pool has its own notifier

T2 chat

Current status

Tequila 2.02

! ! http://www.equi4.com/pub/sk/tequila.kit

several demos:
 chat, checkers, chess, lines, calendar

manual page

working, but rough - mostly API demo

T3

planned later in 2005

robust, test suite, docs, examples

client-side caching - instant startup

thin clients & software self-updates

connect over HTTP - detached use?

security - Steve Landers’ CryptKit

Beyond...

the “killer” net-enabled app platform

some ideas:

web interface on server

collaborative app development

server as gateway to other DB’s

anything - it’s all 100% open source

Switching to Tile

Rolf Ade

April 2005

Abstract

The Tile package is probably the most thrilling and ambitious effort
to revitalize Tk so far. Tile adds new abilities to control and change the
look and feel of Tcl/Tk applications with so-called ’Themes’. Especially,
tile provides native looking widgets at Windows and Mac OSX. Plus the
package provides some additional widgets. This paper gives an overview
over tile at version 0.6.2 and tries to guide Tcl/Tk developers thru the
first steps of using it1.

1 Overview

The tile package had an astonish career. Less then two years ago, Joe English
made the first sources public avaliable. Today, although the version number
suggest, that tile is still in its early days, a few Tcl Core Team Members are
semi-official committed to push the inclusion of tile as a bundled package of the
upcoming 8.5 Tcl/Tk release2. If that should in fact happen, that wouldn’t be
a radical change. The tile package is in some sense orthogonal to the current
Tk core - just don’t use it, and you get the familiar Tk.

At the first look, tile is in short about ’eye candy’. The debate about the
look and feel of Tk has a long history. In the early days of Windows and Mac
support (version 7.5), Tk looked the same on every supported platform. Later
on (starting with 8.0), Tk used some platform specific controls under Windows
and Mac. But the world moved on. Windows XP, Mac OSX and under Linux
KDE and Gnome brought theming support on the desktop - and that renewed
the look and feel problem for Tcl/Tk application programmers. For example,
while it is possible with some effort, to write a Tcl/Tk application, which looks
nearly native on Windows 2000, this isn’t really possible on Windows XP - the
Tcl/Tk application will look ’foreign’ on this platform.

Tile aims to solve this problem by theme-able reimplementations of the core
1The author has followed the development of and discussion about tile from early states on

but he isn’t involved so far into its development. This is a report from an outside viewpoint
and like an article about using a new technology. At the Eleventh Annual Tcl/Tk Conference
2004, Joe English presented a paper more from a tile developers view point[4].

2Though there is up to now no TIP, which proposes that really officially.

1

widgets3. The basic idea of this reimplementation is, to separate the code re-
sponsible for the appearance of a widget from the other parts of the implemen-
tation. Selecting a theme means then just switching from one widget drawing
code to another behind the scene.

But from where does this code come? Well, sure, it has to be written. Much
better: that code is already written and is part of tile. For the first steps, Joe
Tcl/Tk Programmer need not to care about creating complete new themes. For
the ambitious, this is of course possible. New themes can be implemented as
add-on packages written in Tcl or in C, depending on the level of customization
required. But on windows, there is already a theme xpnative, which uses
the Windows ”Visual Styles” API to make tile widgets indistinguishable from
native controls. And on Mac OSX is the aqua theme avaliable, which uses
the Carbon Appearance Manager. The default theme has a new, streamlined
look, compared with Tks current Motif-like appearance on X11 (which is also
avaliable as theme classic). And there are more themes included4.

Beside all that ’eye candy’ it should not be forgotten, that tile provides a handful
additional (of course theme-aware) widgets. One additional gift, that tile may
bring is a new kind of meta-widget framework, but that word isn’t spoken yet.

2 Getting started

The tile sources are hosted under the umbrella of the TkTable project on
SourceForge[5]. Given, that a recent Tcl/Tk version is installed (the current
Tcl/Tk 8.4.9 will do well) building under linux and probably any other sane unix
implementation is just a matter of configure; make all; make install. For
compiling on Windows, a VC++ makefile is included. The tile download page
at SourceForge provides a multi-platform starkit. Additionally, tile binaries are
provided by (among others) ActiveStates ActiveTcl distribution[1] and Daniel
Steffens TclTk Aqua Batteries-Included distribution[8]. Since version 0.6 every
released version has an even last number. Version numbers with an odd patch
number indicate CVS snapshots. So, the next release will have at least the
version 0.6.4.

Tile is a well-behaving Tcl package. To use it, just put

package require tile

near the top of your main script. The scripted library code of the package selects
at package loading time depending on the platform the ’right’ theme (that is
xpnative on Windows XP, winnativ on other versions of Windows, aqua on
Mac OSX and the default theme on X115). There is always exactly one theme

3To do this, tile uses the Tk theme engine. Without much notice outside the tcl-core
mailing list Frédéric Bonnet laid the ground of Tk theming support with TIP 48[3]. Tile
is the first known package, which uses this theme engine. The tile developers revised and
enhanced the theme engine on the way.

4In fact, early adaptors have already written 3-party themes. Most of them are scripted
themes, but Georgios Petasis has provided the start of a new C level theme, which instruments
the Qt styling engine, to draw the widgets[7]

5If not otherwise set in the X resource database.

2

in effect at any one time. The proc tile::availableThemes returns a list of
all avaliable themes. The name of the current theme is stored in the variable
tile::currentTheme. To switch the current theme, use the helper proc6

tile::setTheme <theme name>

When you switch themes, the tile widgets are redrawn automatically with their
new look - unlike Tk, where changes to the option database with option add let
existing widgets alone and change only the appearance of newly created widgets.

The tile reimplementation of the Tk core widgets are implemented in the ttk
namespace and have the same name as their Tk counterparts. It’s a nice experi-
ment to locally override the Tk core widgets in your application’s namespace(s)
with their tile reimplementations with

namespace import ttk::*

Normally, your application should at least start in a new look and even mostly
work as normal. But in most cases it will also be obvious, that this was not
completely all work to do to switch to tile. Before we discuss the most common
problems with the migration to tile, we take a closer look at how tile works.

3 How styling works

Programming GUIs with Tk is like writing a text in a word processor as OpenOf-
fice or Microsoft Word. As the writer may change the font, foreground, back-
ground etc. of every text item, so has the Tk programmer with the help of
tons of options the control over the appearance of the Tk widgets. Tile is more
like a markup language as LATEX. Lots of appearance details like border, font,
foreground, background etc. are handled by the chosen theme. Even more: the
tile widgets doesn’t allow to change a lot of this appearance aspects with widget
options any more. Though, for compatibility reasons (to make migration eas-
ier), the tile widgets ’know’ all the options of their corresponding Tk widgets,
but they ignore some of them. Figure 1 shows this in in detail for the Tk and
tile button widgets.

As familiar from the Tk widgets, the default behavior of the tile widgets is
controlled by the widget class bindings. The tile reimplementations of the Tk
core widgets have the same class name as their counterparts, prefixed with a
’T’ (so, the tile button class is TButton, the tile entry class is TEntry and so
on). The class bindings are independent from the theme – switching themes
doesn’t affect class bindings. In Tk, only the ’container widgets’ toplevel, frame
and labelframe have a -class option, to set the widget’s class at creation time.
In tile, every widget has a -class option. That makes it easier, to create

6It is not recommended to use style theme use <theme name>, because tile::setTheme

loads the theme, if necessary and keeps the variable tile::currentTheme up to date. The
latter is necessary, because the natural [style theme use] unfortunately doesn’t return the
current theme so far.

3

Options common to Tk 8.4.9 button and tile ttk::button

-command -compound -cursor
-default -image -takefocus
-text -textvariable -underline
-width

Tile ttk:button options present for compatibility, but ignored

-activebackground -activeforeground -anchor
-background (and -bg) -bitmap -borderwidth (and -bd)
-disabledforeground -font -foreground (and -fg)
-height -highlightbackground -highlightcolor
-highlightthickness -justify -overrelief
-padx -pady -relief
-repeatdelay -repeatinterval -state
-wraplength

New tile ttk::button options

-class -padding -style

Figure 1: Tk 8.4 button options versus Tile button options

different behaving controls based on the same widget. The tile distribution has
the custom widget class Repeater (to be used for tile buttons) as an example.

The -style option of the tile widgets may be used to specify a custom widget
style.

3.1 Widget Elements

With Tk, the widgets are the ’atoms’ of the GUI. The tile widgets are not
monolithic blocks, but itself build from smaller, simpler parts, the ’quarks’ of a
widget or, as they are officially called, the widget elements. For example, the
Windows-style button has a border, a focus ring and a label, each of which are
distinct elements.

Widget elements have options very much like widgets. For example, the default
border element has -borderwidth and -relief options (in fact, most of the
options, which have disappeared from the widgets will be found as element
options).

Widget elements are usually implemented in C. The tile core provides a default
set of elements. Every theme inherits this core elements, but it may overwrite
the drawing code of a part or all elements with its own implementations (to get
a different visual representation), with more or less or other element options.
A theme may even add new elements. Elements can also be defined from Tk
images to create pixmap themes.

While

style element names

4

returns the list of elements defined in the current theme, there isn’t as of version
0.6.2 any other way than source code diving to know the valid options of that
elements7. To give an overview, Appendix A has a table of all core elements
with their valid options.

3.2 Widget layouts

Since tile widgets are composed of a collection of elements, that elements has
to be layed out somehow to build the widget — this is done by style layouts8.
Every theme may build a tile widget out of more or less elements and/or may
arrange the elements in a different way. For example, the classic theme layout
of the scrollbar widget places an arrow button on each side of the scrollbar,
while this sample code by Joe English places one arrow button on the left and
two arrow buttons on the right side:

style layout Horizontal.TScrollbar {
Scrollbar.trough -children {

Scrollbar.leftarrow -side left
Scrollbar.rightarrow -side right
Scrollbar.leftarrow -side right
Horizontal.Scrollbar.thumb -side left -sticky ew

}
}

The arrangement of elements work like a simplified version of Tk’s pack ge-
ometry manager. It’s even possible, to adjust the layout of a tile widget after
creation.

3.3 Styles and States

Under the umbrella of a style are all the settings collected, which affects the
appearance of one group of widgets, (normally) all of the same class. Styles
are named, in a hierarchical way. For example, the programmer could use
the style name Toolbar.TCheckbutton to collect all special settings needed
for checkbuttons used in a toolbar. All settings, not explicitely set by the
Toolbar.TCheckbutton style are looked up in the TCheckbutton style. If there
are still not explicitely set options, then the settings for the ’root’ style . will
be used, and that style has always a default value for every option, per imple-
mentation.

For example, to set the default relief for the example customized style Toolbar.TCheckbutton
simply use

style default Toolbar.TCheckbutton -relief flat

7The next tile release will allow to query the name of the options of a given element with
style element options <element name>.

8The layout system is one of the enhancements of the TIP 48 style engine made by the tile
developers.

5

But the value of a style option isn’t just a static value. The value of a style
option for a certain widget depends on the state of that widget. Every tile
widget has a map of several flags, currently:

• active

• disabled

• focus

• pressed

• selected

• background

• alternate

• invalid

• readonly

Every state flag is independent from each other. Every tile widget has the widget
commands state and instate to modify and query any combination of that
flags. Now, so called ’state maps’ could set specific values for every option of a
style for any possible combination of states. While this is a powerful concept,
the simple cases are easy to understand:

style map Toolbar.TCheckbutton -relief {
disabled flat
selected sunken
pressed sunken
active raised

}

If a widget state is changed, then the state map of its style is searched for the
first combination of states, that matches. If there is a match, that value is used
for the option. If there isn’t a match, the default value will be used. Widget
state changes usually happen in widget class bindings like:

bind TCheckbutton <Enter> { %w state active }

3.4 Themes

A theme is a named umbrella for widget elements, layouts and styles. The
layouts arranges the elements to widgets and styles control the visual appearance
of that widgets. At scripting level, a 3-party tile theme is an ordinary Tcl
package, with the package name ::tile::theme::<theme name>.

6

4 Migration Problems

It’s the details, that matters. While it is often quite easy to start to migrate
an application to tile (as shown above), there are also typically some issues to
solve. One really obvious problem is, that tile widgets and Tk widgets often
doesn’t look good side by side in one dialog.

Currently, tile provides reimplementations of the following Tk widgets:

• button

• checkbutton

• entry

• frame

• label

• labelframe

• menubutton

• radiobutton

• scrollbar

Also already in the code (and at least basically working) is the start of a themed
scale widget, but that isn’t currently documented. Not as a replacement (which
mimics the interface) of the Tk panedwindow, but as a similar widget there is
the ttk:paned widget.

That means, a few Tk widgets currently haven’t a theme-able tile counterpart.
There isn’t much problem with the canvas widget — it simply doesn’t need
themability. Mostly the same is valid for the text widget9. But even if we rule
this out that means, that theme-able counterparts of the menu and the spinbox
(and eventually listbox) widgets are currently missing pieces. If you have, for
example, a spinbox in your otherwise tile-ified dialog, which looks foreign like a
blain, there isn’t currently much you can do other than adjusting the spinbox
options as possible or even rewriting the dialog without the spinbox.

Unfortunately, it is as yet not easily possible, to query the styles of the current
or other themes, to get, for example, the default font for entry widgets. This
makes is harder, to adjust the option settings of Tk core widgets as close to the
current theme as it may be possible.

Probably even more important also most scripted meta-widgets (like, for exam-
ple, the popular BWidget package) and additional C coded widgets (like the
BLT toolkit[6]) will look foreign side by side with tile widgets. For the most
common non Tk core widgets like combobox and notebook widgets, tile provides
its own theme-able versions. But even if they fit feature-wise, using them means
rewriting parts of the GUI code.

9Though it may asked, why for example the font of entry widgets is controlled by the
theme, but the font of a nearby text widget is not.

7

Tile has merged the -padx and -pady options into a single ”-padding” option,
which may be a list of up to four values specifying padding on the left, top,
right, and bottom.

Another minor interface difference, which may require a bit code editing, is
that the tile label widget has -background and -foreground switches (which
overwrite the theme defaults), but the Tk shortcuts -bg and -fg are only present
as unused backward compatibility switches.

For all tile widgets with a -compound option the the -width option always
specifies the width in characters to allocate for the text string. In Tk, it’s
either the width in characters, or in screen units, depending on the value of
’-compound’, for the widget.

Even the widget commands of the tile widgets are only mostly compatible with
the corresponding Tk widgets. A few widget commands are not implemented
yet. Figure 2 has the complete list. Really important are probably only the
missing checkbutton and radiobutton widget commands. The obvious work-
around is, to use the -variable option and then to change the associated vari-
able value.

Widget Missing widget commands

button flash

checkbutton deselect
flash
select
toggle

radiobutton deselect
flash
select

scrollbar activate

Figure 2: Tk widget subcommands not yet implemented by tile

We’ve already discussed a few times, that the tile widget’s appearance isn’t
specified on a per-widget base with options but is controlled by the settings
of the current theme. That means, if you had, for example, an important red
button somewhere in your application with the help of the -background option,
this button looks like any other button in your application, if you use the tile
button widget. This isn’t a bad thing. It’s a good basic rule for standard
applications, to use standard controls and a standard appearance - and red
buttons are not really common. Tile enforces this principle by design10. But
what, if this is all good and well for you, but you need for whatever reason just
that red button? A solution is, to sub-class the style of your widget:

style default Red.TButton -background red
::ttk::button .redbutton -text "The Red Button" -style Red.TButton

10Although, tile allows you also to give your application a special visual ’branding’, which
emphasis how outstanding your work is, by creating your own theme.

8

Depending on the style you sub-class you may also need to adjust the style map
of your new style.

5 Additional widgets

Beside the styled counterparts of some of the core widgets, the tile package
provides a few additional widgets. None of them is really novel. In fact, most of
them are desired by Tcl/Tk developers since years and therefor there are (often
several) alternative Tcl scripted meta-widget or even C coded implementations
avaliable.

For the early adaptors, which are already switching an existing code base to tile
or writing a new application with it, especially the tile combobox, notebook and
progressbar widgets are very helpful, because the current avaliable scripted
counterparts doesn’t fit well into an otherwise tile-ified GUI. With the classic
or default theme, the additional widgets are well usable within an otherwise
’pure classic’ Tk application.

The tile combobox is, well, an entry field with an associated pop-down single-
selection listbox. It seems to be thought-out comparatively mature. The tile
demo directory even has a simple version of an inline auto-completion code. The
tile notebook widget is a simple, single-tier notebook widget, similar to BWidget
notebook. The progressbar widget supports two modes. The determinate mode
shows the amount completed relative to the total amount of work to be done,
and the indeterminate mode provides an animated display to let the user know
that something is happening.

Figure 3: A screen-shot of the treeview demo script demobrowser.tcl

The tile separator widget is a simple Widget, very much like the BWidget

9

separator (and probably any other separator) widget. By default, it has no be-
havior in response to the user and just displays a horizontal or vertical separator
bar. It is typically used for visual grouping of toolbars, but the tile demo has
also an example for using it to visually structuring a dialog. The tile treeview
widget (see Figure 3) is at the moment a much simple widget, than the also
C coded TkTreeCtrl widget[2] or, for the tree part, the scripted BWidget tree
widget. It can be used like a pure tree widget (without headings and columns).
If it fits feature wise, its simple interface is an advantage. On a recent computer,
this widget is able to handle up to a few hundred thousand tree nodes in fairly
low time and with moderate memory needs. That means, it is able to handle a
lot bigger trees than BWidget tree. The treeview widget currently support only
-yscrollcommand, there is no -xscrollcommand. Multi-line entries in a treeview
column cell doesn’t really work as yet.

A Tile Core Elements

Tile Core Element Options

Checkbutton.indicator -background
-borderwidth
-indicatorcolor
-indicatordiameter
-indicatormargin
-indicatorrelief

Labelframe.text -background
-embossed
-font
-foreground
-justify
-text
-underline
-width
-wraplength

Menubutton.indicator -background
-borderwidth
-indicatorheight
-indicatormargin
-indicatorrelief
-indicatorwidth

Progress.bar -background
-borderwidth
-orient
-sliderlength
-sliderrelief
-width

Radiobutton.indicator -background

10

-borderwidth
-indicatorcolor
-indicatordiameter
-indicatormargin
-indicatorrelief

Treeheading.cell -background
-rownumber

Treeitem.indicator -diameter
-foreground
-indicatormargins

Treeitem.row -background
-rownumber

arrow -arrowcolor
-arrowsize
-background
-borderwidth
-relief

background -background

border -background
-borderwidth
-relief

client -background
-borderwidth

downarrow -arrowcolor
-arrowsize
-background
-borderwidth
-relief

field -borderwidth
-fieldbackground

focus -focuscolor
-focusthickness

hsash -sashthickness

hseparator -background
-orient

image -background
-image
-stipple

label -anchor
-background
-background
-compound
-embossed
-font

11

-foreground
-image
-justify
-space
-stipple
-text
-underline
-width
-wraplength

leftarrow -arrowcolor
-arrowsize
-background
-borderwidth
-relief

padding -padding
-relief
-shiftrelief

pbar -background
-barsize
-borderwidth
-orient
-pbarrelief
-thickness

rightarrow -arrowcolor
-arrowsize
-background
-borderwidth
-relief

separator -background
-orient

slider -background
-borderwidth
-orient
-sliderlength
-sliderrelief
-width

tab -background
-borderwidth

text -background
-embossed
-font
-foreground
-justify
-text
-underline
-width

12

-wraplength

textarea -font
-width

thumb -background
-borderwidth
-orient
-relief
-width

trough -borderwidth
-troughcolor
-troughrelief

uparrow -arrowcolor
-arrowsize
-background
-borderwidth
-relief

vsash -sashthickness

vseparator -background
-orient

References

[1] ActiveState. Activetcl.
http://www.activestate.com/Products/ActiveTcl.

[2] Tim Baker. Tktreectrl.
http://sourceforge.net/projects/tktreectrl.

[3] Frédéric Bonnet. Tip 48: Tk widget styling support.
http://www.tcl.tk/cgi-bin/tct/tip/48.

[4] Joe English. The tile widget set.
http://tktable.sourceforge.net/tile/tile-tcl2004.pdf, 2004.
The so far only published paper about tile from one of the main tile makers.

[5] Joe English Pat Thoyts et al. The tile package.
http://tktable.sourceforge.net/tile/.

[6] George A. Howlett. Blt toolkit.
http://blt.sourceforge.net.

[7] Georgios Petasis. The tile-qt theme.
http://cvs.sourceforge.net/viewcvs.py/tktable/tile-themes/
tile-qt/.

[8] Daniel Steffen. Tcltk aqua batteries-included.
http://tcltkaqua.sourceforge.net.

13

http://www.activestate.com/Products/ActiveTcl
http://sourceforge.net/projects/tktreectrl
http://www.tcl.tk/cgi-bin/tct/tip/48
http://tktable.sourceforge.net/tile/tile-tcl2004.pdf
http://tktable.sourceforge.net/tile/
http://blt.sourceforge.net
http://cvs.sourceforge.net/viewcvs.py/tktable/tile-themes/tile-qt/
http://cvs.sourceforge.net/viewcvs.py/tktable/tile-themes/tile-qt/
http://tcltkaqua.sourceforge.net

OO with Tcl – Artur Trzewik Page ­ 1

Making Tcl "legacy" code
object oriented

Artur Trzewik
mail@xdobry.de

http://www.xdobry.de/xotclIDE
5. European Tcl Workshop 2003 ­ Bergisch Gladbach

OO with Tcl – Artur Trzewik Page ­ 2

Motivation
● OO in Tcl still hot discussed

– Posting „Do you want OOP?” in
comp.lang.tcl 31 items

– Wiki „Poll: do you want OOP?“ ­ 131 times
edited

● Growing popularity of XOTcl (part of Active
State Tcl Distribution)

● Still many questions and unclear answers?

OO with Tcl – Artur Trzewik Page ­ 3

Agenda

● Examples: OO­like code in pure Tcl
● Porting an Wiki example to XOTcl by using

XOTclIDE
● XOTclIDE – what is new.
● Pro & Contr for OO with Tcl

OO with Tcl – Artur Trzewik Page ­ 4

Tk is object oriented
We can use window as object

button .tl.button
.tl.button confiugre -text „new text“
destory .tl.button

How it works internal

proc ::tk::dialog::file::chooseDir::DblClick {w} {
 upvar ::tk::dialog::file::[winfo name $w] data
 set selection [tk::IconList_Curselection $data
(icons)]
 ...
}

OO with Tcl – Artur Trzewik Page ­ 5

Variant – global arrays

proc callOnObject {structureRef} {
uplevel #0 $structureRef myData
set attr $myData(attr)

}

Most solution use arrays as primary structure.
Also global lists are possible.

Helper – Lset, keyed lists (tclx), dict (Tcl5)

OO with Tcl – Artur Trzewik Page ­ 6

Variant – arrays in caller context

proc addNode {_g node args} {
 upvar 1 $_g g
 set id [llength $g(nodes)]
 set g($id) [concat $node $args]
 lappend g(nodes) $id
 set id

}

OO with Tcl – Artur Trzewik Page ­ 7

Bigger Example

- Package for tree processing.

­ Source. Wiki (http://mini.net/tcl/1664)
Simple tree layout by Richard Suchenwirth

­ Clear pattern

OO with Tcl – Artur Trzewik Page ­ 8

Migration to XOTcl
Original code
proc terminals _g {
 upvar 1 $_g g
 set res {}
 foreach i [nodes g] {
 if {[sons g $i]==""} {lappend res $i}
 }
 set res
}
migrated to XOTcl
Class OTree
OTree instproc terminals {} {
 my instvar g
 set res {}
 foreach i [my nodes] {
 if {[my sons $i]==""} {lappend res $i}
 }
 set res
}

OO with Tcl – Artur Trzewik Page ­ 9

Tcl/XOTcl – client view
Original code
graphInit g
treelist2graph {A {B C D} {E F G}} g
sons g B

migrated to XOTcl
OTree g
g treelist2graph {A {B C D} {E F G}}
g sons B

Also with pure Tcl is easy to use oo­like calls. Just define structure reference
as procedure and forward commands . In this case reference management
should be hidden from client.

proc $ref {name args} {
eval $name $ref args

}

OO with Tcl – Artur Trzewik Page ­ 10

Idea of OO

Object

Data structures are hidden for Object user.

DataProcedures

OO with Tcl – Artur Trzewik Page ­ 11

OO Programming vs.
OO Programming Language

OO Programming with not OO Language

Tk, Tix, GTK (even with heritage)

C++ was initially compiled to C

Not OO Programming with OO Language

Anti pattern – Blob, Ghost, many C++ and Java projects.

DataSet in .NET

Object orientation is the way to think about
programming.

OO with Tcl – Artur Trzewik Page ­ 12

OO in Tcl vs. mainstream OO

● not static typed

● more dynamic (introspection=reflection)

● more consistent (class is object – XOTcl)

● better for Aspect Oriented Programming

● better for Pattern (with filters and mixins)

● more similar to Ruby, Smalltalk, Self, Lisp
CLOS as to Java, C++, C#

OO with Tcl – Artur Trzewik Page ­ 13

XOTclIDE

XOTclIDE

SmalltalkSmalltalk
(IDE, Components, Version Control)

XOTclTcl

OO with Tcl – Artur Trzewik Page ­ 14

 XOTclIDE ­ news

● Starkit support

● New databases (Oracle, Access, sqlite) for
version control

● New Plugins

● Usability improvements (by Michael Heka
and Fabrice Pardo)

● Supports new XOTcl features.

OO with Tcl – Artur Trzewik Page ­ 15

 Migrating Tcl – live

● Importing code

● Creating components

● Migrating to XOTcl

● Adaptations

● Tests

OO with Tcl – Artur Trzewik Page ­ 16

 Advantages of OO

● Better and clear structure

● Lifetime support (no memory leaks)

● Good for complex structures (no need for references)

● ? More Productivity and Reuse

● Better for complex projects

● Additional Features (mixins, filters, delegation, assertions, ...)

● No reinventing the wheel

OO with Tcl – Artur Trzewik Page ­ 17

Disadvantages of OO

● Additional Extension needed

● Less portability (jacl, jim, tclsharp)

● ? Performance

● Many extensions (XOTcl, ITcl, Snitt, Stoop,
Classytcl)

OO with Tcl – Artur Trzewik Page ­ 18

 That's all!

Questions ?
Fragen, Anregungen?

Demandoj?

http://www.xdobry.de/xotclIDE

Relational algebra for Tcl: introducing Ratcl and Rasql

Jean-Claude Wippler
Equi4 Software
jcw@equi4.com

ABSTRACT
There are a number of ways to manage data in Tcl, from native lists and arrays to various database bindings.
The choice involves trade-offs regarding persistence, robustness, performance, memory use, query capabilities,
scalability, portability, standards conformance, and convenience. This is an issue even for simple scenarios,
given Tcl's limited support for data structures. A new approach will be presented which is based on relational
algebra, supplied through two packages: Ratcl, which provides a relational algebra extension that fits naturally
with Tcl. And Rasql, which provides a layered SQL interface for those who prefer it. Both are based on over a
decade of experience gained with Metakit's vector-oriented internal data model, and use a new very compact
and efficient C-coded engine called Thrive. Ratcl introduces a terminology and set of conventions which mini-
mize the impedance mismatch caused by having databases added on instead of native persistence and query
support, while Rasql takes this one step further to map standard SQL queries onto Ratcl. Working examples will
be presented, along with performance results so far. This covers the first phase, which focuses on access and
querying. The second phase is work in progress and will be briefly described - it deals with modifications,
transactions, and multi-user scenarios.

Introduction
Tcl has a range of mechanisms to deal with data, both
in-memory and on-disk. One of the more unusual
and very powerful aspects of Tcl is that (almost)
“everything is a string” (EIAS) as far as the pro-
grammer is concerned.

This is both a blessing and a curse. The total lack of
inherent type with EIAS that makes it very easy to
quickly write code, can also be a cause for trouble:

• Type-less data can lead to code where bugs are
caught later in the development process.

• Fewer opportunities to work with highly optimized
data representation formats.

• No simple solution for missing values, i.e. null as
being distinct from the empty string.

The lack of explicit type translates directly to the lack
of explicit structure, i.e. compound types (records).
While Tcl offers some very convenient mapping such
as the new “dict” convention in 8.5, this type is not as
easily enforced or stored truly efficiently on file.

When large volumes of data are involved (more than
can conveniently be held in memory) or when high
performance data manipulation is required, the EIAS
approach by itself tends to lead to a lot of Tcl coding
to deal with the unwanted consequences. This is usu-
ally just about the time when people start looking at
databases as a way to address these issues.

There is something odd going on: as a language, Tcl
offers amazing productivity gains when it comes to
developing large-scale production software, but when
a substantial amount of data is involved, much of the
benefits are left behind as the coding switches to a

very different database style, such as SQL.

This paper presents a conceptual model based on
Relational Algebra (RA) and shows how it can be
embedded in Tcl in such a way that the benefits
of scripting and quick ad-hoc coding remain,
while the data gets managed in a completely new
way, with high performance and persistence
thrown in for free.

The Ratcl and Rasql extensions described here
are part of a larger research project called
“Vlerq”, which will also be presented briefly
later on.

So what’s the problem, really?
The main reason why data storage has so many
implications for programming is copying.

Programs are strange beasts: when launched,
they start with a completely empty slate – all data
processed by a program needs to be brought in,
either directly from file or via a database layer.
Worse, all new data, and all results produced by
the program need to be saved back to “persist”.
Do nothing, or crash, and the data will vanish.
Imagine us working that way, knowing nothing
when we wake up, and forgetting everything
when we go to sleep!

So what most programs do, and have been doing
for decades, is to create mechanism to facilitate
this task of “fetching” and “storing” data, or
“loading” and “committing” in database par-
lance.

The mindset that goes along with this is very
deeply entrenched in most programming lan-

- 1 -

guages. One possible exception is Smalltalk /
Squeak, where the system itself loads all data on
startup and saves it again on quit – treating code and
data uniformly.

For a database to be usable in Tcl we expect it to be
good at fetching the data we need, and good at saving
it back robustly and efficiently when changed.

Let’s examine the different existing approaches to
data storage, before attempting to offer an alternative.

Flat files
The simplest form of data storage by far is to dump
everything to file, and restore it all in full later. The
term “flat” is used, because in most programming
languages this tends to destroy all structure, i.e. inter-
data relationships.

In Tcl, structure can be saved on file for free. If you
store a list, it’ll come back as a list. This is one of the
immense benefits of the EIAS approach of Tcl. So in
a way, Tcl is actually much better equipped to work
with (flat) files than most other languages.

There are drawbacks to flat files, though. For one,
you have to dump and restore all data at once. There
is no easy way to work with subsets (especially in
terms of saving only the changes back). This makes
the dump/restore slow as more data is involved, and
means a copy of all data has to be held in memory.

Another problem is robustness. When saving
changes, you have to be very careful not to lose all
data altogether if the system where to crash or be
switched off at just the wrong moment in time.

Yet another problem is evolution. How do you deal
with old files when a new version of the application
requires the data format to be extended in some way?

All of a sudden, flat files turn out to be not so trivial
anymore. We’re getting bitten by the fact that having
data on-file and in-memory as totally disjoint forms
of the same is not that convenient after all.

Relational databases
The next solution is to adopt a database of some kind.
By now, this is almost always a relational database,
based on decades of work leading to a very sound
theoretical foundation for both the way to structure
data and the way to manipulate it.

There are many relational database implementations,
of varying complexity and sophistication. The most
common ones in Tcl are probably Oracle, Postgresql,
MySQL, and SQLite. The latter is quite interesting
because it is embeddable, i.e. part of the application,
whereas the others mentioned here are client/server
solutions using a separate process or even machine.

With a relational database, all the problems men-
tioned for flat files are solved. Access and modifica-
tion in subsets of the data are easy and quick. Data
no longer needs to be loaded on startup or saved on
exit. Changes are saved as transactions, so that fail-

ure is completely controlled: either a set of
changes makes it into the database or it does not
– there is no intermediate or inconsistent state.

The robustness of relational databases is summa-
rized with the “ACID” acronym: changes are
Atomic, Consistent, Isolated, and Durable. It’s
good to be able to truly rely on a database – after
all, a crashed program can usually be restarted,
but damaged and inaccessible data is essentially
unrecoverable.

This comes at a price, however.

Data in a database can be orders or magnitude
slower to manipulate than in-memory data. Try
comparing a relational “join” with a Tcl array
lookup, which are more or less the same opera-
tion, in abstract terms.

Apart from speed, databases tend to highlight the
huge difference between in-memory data and on-
file data. Something as simple as “$a($b)” in Tcl
ceases to be available. Instead, you’re faced
with, say:

 [$db {select * from a where key = ‘$b’}]

… with not just a performance loss but also the
issue of accurate quoting when $b is an arbitrary
string.

In theory, relational databases are wonderful. In
practice, they can be a pretty lousy fit for pro-
gramming languages.

Other ways to store & manage data
There are a number of other solutions to dealing
with large amount of persistent data.

OODB – To overcome the impedance mismatch
between databases and programming languages,
a number of object-oriented solutions have been
built. The idea is to treat everything as an object,
and to then add a mechanism whereby objects
transparently move between their in-memory
form and a “backing store”, using techniques
such as “pointer swizzling”.

A hybrid is “object-relational” mapping (OR),
where objects are mapped to records in relational
databases.

The OODB approach will not be explored further
– one reason being that Tcl uses EIAS as basic
model, not OO. But more importantly, OODB
suffers from a major flaw when compared to re-
lational databases: they tie the navigational ac-
cess model to the data structure. In other words:
when using an OODB, you have to make choices
on how the data will be accessed, whereas the
relational model separates the data structure from
the way it is used. This is a very fundamental
issue, at the heart of many OODB vs. RDB de-
bates.

XML – Another approach is to fully abandon the
relational model and treat everything as a hierar-

- 2 -

chy. XML was designed as general-purpose inter-
change format, and is now occasionally touted as
solution as the model to use for storage and manipu-
lation of that data as well.

There is little benefit to doing so, actually. Apart
from the fact that it does not address the main issue
of avoiding the gap between on-disk and in-memory
formats, the main drawback is that by ignoring inher-
ent repetitive structure in large data-sets, it prevents a
number of optimizations and notational conveniences
from being used.

Lastly, XML data can in fact very efficiently be rep-
resented via the relational model.

Berkeley DB – This represents a range of different
database implementations actually (such as gdbm).
The model used is the key/value association. With
the *DBM packages, all data is stored by key, and
looked up by key, plus the ability to traverse all keys.

This can be summarized as the persistent equivalent
of Tcl arrays.

The speed of keyed access can be quite high, due to
the use of hashing, although that tends to break down
when large numbers of accesses are performed,
where hashing leads to excessive disk seeking.

This approach is not used much, despite the fact that
it has been around for ages. One reason is no doubt
that richer data structures are often needed, and that
as with OODB and XML solutions it often is useful
to be able to navigate through the data in other ways
than by key. A request such as “find all keys X for
which the value is 123” ends up traversing all data.

Metakit – Metakit is a mix between the flat-file, rela-
tional, and hierarchical database approaches. It uses
an inverted column-based format for efficient brute-
force searching across all data, and uses the “stable
storage” algorithm for transacted changes.

The Metakit database is a bit of everything and a bit
of nothing. It has been used as basis for a relational
SQL layer, although the Tcl binding does not really
expose all functionality of the core.

The basic goal was to try and combine the powerful
relational database concepts while using a column-
wise internal structure for performance. To put it
another way: Metakit presents a row-wise interface to
what is essentially an “inverted” format. It favors
fast access/searching, at the cost of slower updating.

Searches in Metakit can use hashing or binary search,
but they are usually done by brute force. The reason
this works so well is that copying is avoided to an
extreme degree. Iterating over one field in all rows
often outperforms other databases, even when they
use indexes (up to a point, of course).

Brute force searching also works well with imprecise
searches, i.e. “globs” and regular expressions, where
a full scan is usually needed anyway. In Metakit, text
searches are cheap.

One consequence of the inverted design is that data

structures can instantly be extended or modified.
Adding a field to all rows is a matter of adding a
single column internally. This encourages grad-
ual development – extend the data as your code
grows, instead of designing it all up front. This
is a great match for the dynamics of scripting.

But Metakit is not perfect. Its Tcl binding does
not expose some of the more advance capabilities
of the underlying engine. And although quite
snappy, the design is far from optimal in terms of
performance.

Lastly, Metakit’s documentation is lacking. It
takes some work to get the best mileage out of
the system.

Home grown – There will always be data stor-
age solutions that are custom-designed for a spe-
cific task. The challenge of any new solution is
of course to try and offer sufficient performance
and flexibility to cover an increasing number of
these cases. The trend towards using “standard”
solutions appears to be increasing, no doubt be-
cause home grown code is much more work to
maintain, and because more and more open
source alternatives present themselves.

Client/server – Lastly, one could say that the
easiest way to use a database is to not use one at
all. Instead of incorporating code for storing and
manipulating data inside the application, the al-
ternative is to simply connect to a database on a
remote server. This relies on permanent network
connectivity – an obvious trend, as the rise of
websites with databases behind them shows.

Looking for alternatives
Wouldn’t it be great if we could somehow com-
bine SQL’s relational foundation with Metakit’s
column-wise performance and embed it all really
cleanly in Tcl?

This is precisely the aim of Ratcl and Rasql.

The strength of SQL is that it has a strong rela-
tional foundation that is extremely effective
(even though some will argue that SQL is se-
verely flawed). It is a great benefit to be able to
specify data processing tasks in a non-procedural
way, i.e, in terms of what needs to be done, not
how it is done.

Not only is it easier to say “find all the names of
the part numbers I have on this list” than “go
through each item on this list and lookup the
name associated with in the parts catalog”, it also
leaves more room for the underlying code to
choose between different implementations. In
cases where performance is not at a premium, the
benefit of not having to spell out the details
surely does simplify programming.

Then again, the SQL world is rife with examples
where changing the order of a request makes a
huge difference in performance, or where one is

- 3 -

expected to add an index briefly for use in a specific
task, and drop that index again to avoid hampering
other tasks. The last thing we need is a system where
we have to fight and apply counter-intuitive tricks to
get good performance.

If you think this is a minor issue, think again: people
abandon SQL all the time due to the unacceptable
performance they get (for whatever reasons).

Metakit proves that an inverted column structure has
the ability to outperform traditional databases, some-
times by an order of magnitude. Examples are
known for each and every database mentioned so far,
where Metakit was able to perform the same task an
order of magnitude faster. The very high-end “Kx”
commercial database using a similar design shows
that the limits of scalability and performance have
not yet been reached, not by a long shot.

The challenge ahead, is to embed these techniques
into Tcl in such a way that one stops thinking in
terms of getting data “out” of a database and storing
changes back “in”. Better still, we should try to cre-
ate a system whereby the whole concept of a “data-
base” separate from the language fades away.

This is similar to the way Tk has pushed “graphics
contexts”, “ports”, “screen coordinates”, “refresh”,
and “updates” out of the mind of the application pro-
grammer. We don’t think of Tk as a place to copy Tcl
data to. We create a view hierarchy in terms of wid-
gets, and then events do the rest.

There is a tremendous opportunity here. A lot of ef-
fort in programming deals with moving data around,
altering its shape and structure a bit, and transforming
it – often in very simple ways. At every point, we
have to think where to copy data from, what variables
to put it in, and how to deal with the end results – on-
screen and on-disk.

Already, Tcl has many types of data collections. In-
ternal data, such as channels, widgets, commands, as
well as external data, such as returned from glob, stat,
events, I/O.

Already, we lack a consistent way of combining this
data. An example of this is: give me a list of a read-
only files in a directory. In Tcl, we have to get a list
(glob), iterate over them (foreach), check the file’s
attributes (file stat), and generate a list with results
(lappend), Why can’t we join the glob to the file stat
and apply a condition?

Relational algebra provides a simple formalism,
which is every bit as powerful as SQL (more so,
some will say), and which lets us specify (as opposed
to spell out) what needs to be done.

To get there, we need to “let go of the data”., i.e. stop
thinking in terms of storing it in variables. Instead,
we need to set up our processing in terms of opera-
tors (and use variables to manage those structures).

We need to let Tcl do what it does so well: glue.

Introducing Ratcl
The Ratcl extension for Tcl takes a first step to-
wards a non-procedural approach to program-
ming.

To use Ratcl, you have to be prepared to place all
data under its control. Doing so will give you
low memory consumption, persistence, and per-
formance in return. Data in Ratcl can be manipu-
lated through relational operators (join, groupby,
and so on), set operators, expressions to produce
calculated results, conditions to define subsets,
and sorting.

The central concept in Ratcl is the “view” – think
of it as the widget of the data world. A view is a
tabular structure with the following properties:

• Views consist of rows, indexed by position.

• Views consist of columns that can be referred
to either by name or by position.

• At every (row,column) position is a data item,
which is either a basic value such as an integer
or string, or a nested “sub-view”.

• All items in a column are of the same type.

The above terminology will be used in the rest of
this paper, but usually very similar designs un-
derlie most database systems. Here is a compari-
son with some familiar concepts:

• SQL’s “tables” are similar to views – they do
not support positional access, usually, nor
nested sub-views. In SQL, rows are called
records and columns are called attributes.
Views are indexable, they can also represent
result “rowsets”, there is no need for cursors.

• The “relations” of pure relational database
theory differ from views in that neither posi-
tional access nor order is supported, for rows
as well as columns.

• Tcl arrays (and Python dictionaries) are very
similar to a view with a “key” and a “value”
column. However, views treat keys and values
on equal terms, and allow either of them to
consist of multiple columns.

It might be tempting to see views as matrices of
rows and columns, but this is in fact not such a
good idea. For one, matrices are uniformly
typed, whereas each column in a view can hold
different types of data. The other reason is that
views will be extended later to support dimen-
sions independent of row structure (so you could
have a 3-dimensional space of rows of arbitrary
complexity, not just single values).

Views are the central interface between Ratcl and
Tcl. In Tcl, a view is a command object. You
create a view explicitly and fill it with data in one
command:

 % set V [view A B C \

 { a1 b1 c1 a2 b2 c2 }]

- 4 -

To dump the view in Tcl, simply execute the com-
mand with no arguments:

 % $V
 A B C
 –– –– ––
 a1 b1 c1
 a2 b2 c2
 %

As you can see, V was a view with two rows and
three columns, named A, B, and C.

Yes, V was a view, not is, as you can see here:

 % $V
 invalid command name "::vlerq::o::1"
 %

Views are command objects in Tcl, but they require a
slightly modified style to be usable transparently in
Tcl. The details of this will be explained later, for
now it is sufficient to note that with view objects, you
should use “vset” instead of “set” when storing their
name in a Tcl variable (or array element). To repeat:

With views, use “vset” instead of “set” !

This idiosyncrasy is only needed in Tcl, btw. Other
languages can handle views like any other object.

With these preliminaries out of the way, let’s see
what Ratcl has to offer.

A little tour
Ratcl includes a wide range of view operators. A few
basic examples are given here. See the Ratcl pages
on the web for more complete examples and some
preliminary reference documentation.

Let’s assume the following views have been defined:

 % $R
 A B C
 – – -
 a b c
 d a f
 c b d
 % $S
 D E F
 – – –
 b g a
 d a f
 % $T
 A B C D
 – – – -
 a b c d
 a b e f
 b c e f
 e d c d
 e d e f
 a b d e
 % $U
 C D E
 – – –
 c d e
 c d f
 d e f
 %

Then we can do things like:

 % [$R product $S]
 A B C D E F
 – – – – – -
 a b c b g a
 a b c d a f
 d a f b g a
 d a f d a f
 c b d b g a
 c b d d a f
 % [$T project {A B}]
 A B
 – -
 a b
 b c
 e d
 % [$T if "B > 'b'"]
 A B C D
 – – – –
 b c e f
 e d c d
 e d e f
 % [$T join1 $U]
 A B C D E
 – – – – -
 a b c d e
 a b c d f
 e d c d e
 e d c d f
 a b d e f
 % [$T join0 $U]
 A B C D
 – – – -
 a b e f
 b c e f
 e d e f
 %

Note how we used “[$R product $S]”, instead of
“$R product $S”. The reason is that “$R product
$S” returns the name of a view command object,
not its contents. By adding an extra pair of []’s,
we cause it to dump its contents, just like “$R”
does. We could also have used the following
equivalent sequence:

 % vset x [$R product $S]
 % $x
 A B C D E F
 – – – – – -
 a b c b g a
 a b c d a f
 d a f b g a
 d a f d a f
 c b d b g a
 c b d d a f
 % unset x
 %

View operations can be nested at will:

 % [[$T project {C D}] minus \
 [$U project {C D}]]
 C D
 – -
 e f
 %

- 5 -

And lastly, views can be tied to a Metakit data-file:

 % vset M [mkopen mydata.db]
 % $M names
 dirs
 % [$M sub 0 dirs] names
 name parent files
 % [[$M sub 0 dirs] sub 0 files] names
 name size date contents
 %

Here’s an example combining much of the above:

 % vset D [[mkopen mydata.db] sub 0 dirs]
 % [[$D project {parent name}] sort]
 parent name
 –––––– –––––––––––
 -1 <root>
 0 doc
 0 lib
 2 Class1.0
 2 ClassyTk1.0
 2 Extral2.0
 2 Mpexpr10
 2 Tktable2.7
 (etc…)

Here is the set of view operators currently available:

add addcol all as at blocked cmp col cols
concat counts decref delete divide expr first
flatten get groupby if ifmap incref insert
intersect join join0 join1 last mapcol maprow
meta minus names norows nspread omitcol
omitrow pair pick print product project
rename repeat reverse row rowid rows set
single slice sort sortmap spread sub subcat
types union uniqmap unique vid

The list of operators is still evolving, but as you can
see all key relational- and set-operators are included.

Advanced aspects of Ratcl
There is a lot more to say about Ratcl than will fit in
this paper. A few highlights:

Calculated fields – data can be generated as a result
of calculations based on other fields:

 % [$T pair [$T expr F:I {B > 'b'}]]
 A B C D F
 – – – – -
 a b c d 0
 a b e f 0
 b c e f 1
 e d c d 1
 e d e f 1
 a b d e 0
 %

The current parser is not yet able to handle callbacks,
but once this is implemented, arbitrary Tcl-based
computations will also be usable inside views.

Derived views are cheap – views are “lazy”, i.e. the
information extracted from views is produced on-
demand, at the latest possible moment in time. For
example, setting up a sorted view is instant, only
when rows in it are accessed does the sorting take
place. For the same reason, access to views stored on

file can be extremely quick, since only a minimal
amount of information is actually read in.

This has profound implications for situations
where only a subset of the results is used. One
example is the presentation of views on-screen:
large views need not be fully accessed when only
a small part of the view is showing on the screen.

Sub-views – in contrast to traditional relational
database systems, views can be nested. The re-
sult of the standard “join” and “groupby” opera-
tors is in fact just that: a view with nested sub-
views. This greatly simplifies processing, and is
dramatically more efficient than producing a re-
sult where all data is expanded to fully “flat”
tabular form.

The “flatten” operator can be used to force a flat
operation when needed, though.

As all other operators, “join” and “groupby” are
lazy performers, with everything happening be-
hind the scenes in a totally virtualized manner.
This means, for example, that joining two huge
views takes little more than two integer vectors
of memory, which are set up the moment access
to the result is requested.

Cleanup – the view command objects of Ratcl
use an elaborate reference counting mechanism
to make sure they are kept around as long as
needed, but no longer.

The consequence has already been seen in the
use of “vset” instead of “set”. The reason for this
is that an “unset trace” is needed in Tcl to make
sure views are cleaned up when its variable goes
away (implicitly on return, in the case of local
vars in a procedure).

A somewhat unusual aspect of view command
objects is that by themselves they will self-
destruct after a single call. This allows the com-
bination of multiple view operations into a single
statement, without creating uncollected “debris”.
The flip side is the need to use “vset”. This re-
striction could be lifted if a future version of Tcl
were to make the standard “set” just a little
smarter, by the way.

Related packages
For reference, here is a brief list of Tcl packages
which offer some of the same functionality as
Ratcl:

• NAP (“Numeric Array Processor”) by Harvey
Davies offers vectorized processing of data. It
is geared towards numeric processing whereas
Ratcl works equally well with strings.

• TclRAL by Andrew Mangogna is Relational
Algebra system that stays very close to the
pure relational model, using the “relvar” and
“relation” terminology. It is entirely value-
based, and as such a good fit for Tcl, but it has
no persistence, other than dump/restore.

- 6 -

As has become clear with Metakit over the years,
there are very few systems around with relational
algebra as basis, and offering the persistence of data-
bases without adopting the SQL language.

The case for Ratcl
Ratcl aims to bridge that gap between databases and
Tcl, offering the benefits of both as much as possible.

By “claiming” control over all data, it provides very
efficient view “operators” as well as persistence.

The current set of operators is already reasonably
complete, but a number of planned improvements
will take this even further, such as allowing arbitrary
bits of Tcl code inside view expressions – very simi-
lar to the way Tcl’s “expr” commands adds an alge-
braic notation to Tcl while still allowing “[…]” inside
any expression to escape back to Tcl.

The central concept is the view, which maps to a Tcl
command object – much like widgets map low-level
GUI concepts via Tk. Views can be passed around
and combined at will. Unlike most commands, views
represent lazy evaluation, where the actual processing
takes place behind the scenes at various points in
time. Setting up complex nested calls to view opera-
tors is about preparing for processing, rather than
having data handling actually being done.

As a consequence, Ratcl can do a lot of internal op-
timization, delaying file access and computations
until the time they are actually needed. Combined
with the column-wise structure of data, this often
leads to a substantial reduction of processing time.

The efficiency of views in Ratcl will be presented in
the next section.

Size and performance
The Ratcl extension consists of a tiny “core engine”
coded in C, a bit of Tcl glue code, and some auxiliary
data. A complete system, including all the relational
and set operators, a Metakit data file reader, and an
expression parser is about 75 Kb. With compression,
a standalone exe containing all of the above as well
as a Zlib de-compressor ends up being 22 Kb.

The source code of all the pieces of Ratcl amounts to
some 3000 lines of code, half of which is C.

Small is beautiful, not just as an academic challenge,
but because less code means fewer places for bugs to
hide, and fewer cases to deal with and test. The lay-
ering used in Ratcl means that the system consists of
a small set of carefully chosen components, each
highly dedicated and aimed at only performing a few
tasks, but doing those real well.

The performance of Ratcl has not been optimized at
all so far. Key operations such as join and groupby
use algorithms which are far from optimal right now,
the reason for this is that this implementation focuses
on functionality and took many shortcuts to get the
basics working, regardless of overhead.

Nevertheless, Ratcl can open and access Starkits,
which are Metakit data files, faster than the
Mk4tcl extension itself. In plain integer column
iteration, Ratcl can outperforms Mk4tcl by a fac-
tor 4, in string iteration it is about on par.

In another test, using an Apache log file with
about a million entries, it takes 1.66 sec to locate
3 copies of a specific IP address in today’s basic
Ratcl (Metakit: 2.18, SQLite: 3.85). All timings
are done of a relatively slow PIII/650 notebook
to get a decent timer resolution.

The comparison with SQLite is a bit unfair, since
one should use an index, in which case the time
drops to 0.32 mSec. Then again, note that adding
the index took 37 sec, and dropping it again took
another 3 sec, so the choice of what to index is an
important one to make up front.

To construct a comparable case in Ratcl requires
creating a view which projects the key and then
sorts it. With sorted data, binary search can then
be used to locate a key. In Ratcl, project + sort
take about 0.4 sec, and searching takes 28 micro-
seconds).

The conclusion at this point should be that al-
though Ratcl’s brute force is surprisingly effi-
cient, it is no match for indexed access when the
number of records involved is large (we’re com-
paring O(N) brute force with O(log N) binary
search). At this point, similar tricks must be used
to gain optimized access, after which a Ratcl-
based solution again outperforms other databases
by an order of magnitude. Similar results and
ratios can be expected with hashing, by the way.

Now, as everyone doing benchmarks knows, it’s
fairly easy to “construct” examples that support
any type of conclusion. Therefore, in the follow-
ing discussion all further comparisons have been
omitted.

Instead, let’s simply examine how long it takes to
perform certain tasks using the high-performance
primitives built into Ratcl (but not yet used very
much!).

Opening the above data file takes 720 mSec.
Using a primitive call, locating 3 ints in a million
on file takes 20 mSec (80x as fast as Ratcl’s cur-
rent dumb code).

One point to make is that most database timings
are severely skewed towards single accesses, a
metric which is usually irrelevant. What matters,
is the performance figures when large amounts of
data are processed as a whole. This is where
databases can get dogged down to hours of proc-
essing time and I/O-bound disk thrashing. This
is also where Ratcl’s column-wise model tends to
make a dramatic difference.

The above example of finding 3 matching ints in
a million takes exactly as much time regardless
of the number of results – i.e. 20 mSec to find all
values larger than K, for any K.

- 7 -

At the time of writing, not many more performance
results are available. As mentioned before, Ratcl
does not yet hook into the optimized vector-oriented
code that is part of the system – most of the effort so
far has simply gone into getting the data structures
ready for vectorized use, and implementing basic
functionality.

One more result which ought to give an impression of
what lies ahead for joins and groupby is available: a
hash-based algorithm which identifies all identical
values in a set of the same million integers as above,
takes 0.15 sec. For comparison, Tcl’s “lsort –unique
–integer” takes 3.7 sec to produce the same results
(about 20,000 groups). Note also that these integers
consume 4 Mb memory in Ratcl and 28 Mb in Tcl.

The explanation for these results, which show orders
of magnitude higher performance figures than current
database systems, is that the combination of an in-
verted column-wise design with a very efficient data
format which is identical on-file and in-memory,
work together to take maximum advantage of today’s
CPUs. Not only is a column-wise structure optimal
for file access, it also lets CPU caches work at their
best. All it takes is a highly vectorized internal de-
sign of the underlying code engine.

Reasons to use SQL
Despite these nice results in Ratcl, there are still a
number of reasons to use SQL in an application:

• It’s a standard – there is a lot of code based on SQL
and a lot of experience with it.

• It’s convenient to write tasks in a non-procedural
way. The ability to think in terms of what instead
of how is a huge time-saver, even if performance
might suffer a bit.

• And lastly: you may not have a choice, if your boss
dictates it. The same holds for Tcl itself, of course!

SQL is a complete language of its own (several in
fact, sometimes frustratingly so). By adding SQL to
an application, you are bound to get more or less of
an impedance mismatch – quoting rules change, vari-
able naming and expansion changes, even simple
operators change (“<>” versus “!=” for example).
There is also some duplication of functionality, such
as SQL’s “like” versus Tcl’s “string match”. And
lastly, you may find that SQL does not offer regular
expressions, and that Tcl’s “regexp” cannot be used
for string searches in data managed by the database.

SQL is a language (from the 60’s, in fact) - and its
use in Tcl unavoidably implies working with two
sometimes very different ways of looking at data.

Even though SQL is quite well standardized, the
availability and lack of features differ widely across
different database implementations and their bindings
to Tcl. There are database independent wrappers and
there is ODBC – but be prepared for quite a bit of
tinkering. SQL is nice, but definitely no panacea.

Introducing Rasql
Rasql aims to bridge the world of databases and
Tcl, but in a very different way than Ratcl.

Rasql is an implementation of SQL, and as such
offers the standard SQL notation for those who
choose to work this way.

The crucial point to make is that Rasql in based
on Ratcl – it is in fact a thin layer over Ratcl,
parsing and translating SQL statements to rela-
tional algebra operations in Ratcl.

This has a several implications:

• Rasql simply presents itself as an extra set of
view operators, the most important one being
called “select”.

• You can combine views constructed with Ratcl
with Rasql’s standard SQL syntax.

• Views use the same inverted-column design,
and are very efficient in space and time.

• The result of a Rasql “select” is a view.

• There is some usefulness in having sub-views,
but there are also some limitations on their use
inside SQL, which was not designed for them.

That last note means that Rasql can also be used
as basis for further Ratcl operations. So now you
get the best of both worlds: use SQL’s non-
procedural notation when it is convenient, yet
switch to view operators as needed.

Rasql is not a gimmick. It handles nested sub-
queries and quite advanced cases of SQL. Its
design differs fundamentally from most SQL
implementations, in that it translates non-
procedural requests to set-wise manipulation of
data, just as Ratcl does – this takes full advantage
of the internal column-wise design.

At least four different implementations of more
or less complete SQL engines on top of Metakit
have provided the insights needed to accomplish
this. Rasql combines this experience and brings
it to Ratcl.

Rasql’s limitations
One pretty severe limitation of Rasql is that it is
work in progress. Its last implementation is from
2004, and was based on a predecessor of Ratcl.
This code is not ready for serious use, and needs
to be rewritten to use the latest Ratcl code base.

Another limitation of both Ratcl and Rasql right
now, is that there is no built-in support for storing
NULL. This can be emulated quite efficiently by
adding an extra flag to every NULL-able column,
but computations with such an approach can be-
come a bit tricky. The reason NULL has not
been added yet is that it requires a change to the
Metakit file format to allow persisting views
where some data items can be NULL.

- 8 -

The use of NULL is extremely controversial in the
formal relational database world. Still, to provide
sufficiently compatible support for SQL it will need
to be supported in Ratcl and Rasql. Sub-views also
offer a way to avoid NULLs in join and groupby.

Rasql does not aim to support SQL 100% (if that
were even possible). The goal of Rasql is to support
enough of the language to perform all common tasks,
and to offer as few surprises to people who are used
to SQL as possible. Rasql is a gesture towards what
has become a de-facto standard, not an endorsement,
and certainly not “Yet Another SQL Database”.

Lastly, Ratcl and Rasql are single-process in their
current design. A number of high-performance con-
cepts for contention-free parallelism in Metakit will
be ported to Ratcl (and hence Rasql), eventually.

Note that this does not mean that Ratcl and Rasql are
single-user. Multi-user scenarios will be fully sup-
ported as client/server option, once transactions are
added back in, with all the aspects of ACID (atomic-
ity, consistency, isolation, and durability) covered.

Current status
Right now (early May 2005), the Ratcl package is
about to enter its second public release. This release
supports general-purpose views, a wide range of view
operators, read-only access to Metakit-compatible
data-files, and simple serialization of views to file.

The current performance level of Ratcl is “decent”,
meaning it’ll compare just fine with other solutions,
but also that it is still far from the intended levels.
The reason for this is that a lot of the internal vector-
oriented processing has not yet been activated.

This Ratcl release will not be suitable for production
use, it’s really a technology preview – to allow others
to get more experience with the design and comment
on it, and to act as a baseline for optimization.

The stability of Ratcl is already very good, i.e. it does
what it should do. Robustness is not quite there yet,
i.e. if used incorrectly, Ratcl still falls over far too
often to be usable in general.

There is a nice introduction to Ratcl on the web, but
it refers to an earlier implementation – some details
of the syntax have changed by now. The semantics
of it all is largely unchanged, though.

Rasql will not be released in public for some time to
come, although the code will be made available as
soon as the port to the latest code base is completed.

The Vlerq research project
Ratcl and Rasql are part of a research project called
“Vlerq”. Vlerq is an acronym for:

Take Vectors
Add a Language

Make it Embeddable
Use the Relational model

Include a Query mechanism

Ratcl and Rasql are the result of using several
tools being developed in / for Vlerq. In particu-
lar, a high-performance vectorized virtual ma-
chine called Thrive (Threaded Interpreter Vector
Engine), and a systems-level language called
Thrill (Thrive Language Layer).

The Thrive VM is a very tightly coded stack ma-
chine in C with an emphasis on handling vector
operations and persistent data with maximum
efficiency. Thrive includes automatic garbage
collection. The Thrill language is relatively low-
level, and is loosely based on Forth and other
“concatenative” languages. Most of the Ratcl
logic is coded in Thrill.

Much of the expected performance of Ratcl and
Rasql are due to the fact that Thrive and Thrill
have been designed and implemented from the
ground up to provide the necessary functionality.
The results so far and the extreme compactness
of the code show that by segmenting a project
into different conceptual layers (combining C,
Thrill, and Tcl), far more can be accomplished
than with a single-language design.

In a way, the Vlerq project is really a tribute to
John Ousterhout’s vision on scripting as a glue
language.

Longer-term goals
The use of views as central mechanism for data
exchange is only the beginning of a considerably
more ambitious goal: to create a data-flow driven
framework whereby processing becomes com-
pletely automatic.

The promise of data-flow is that it allows you to
move away from “thinking about all the conse-
quences all the time”. Instead of applying
changes to data and hard-coding the conse-
quences at each point where such changes are
made in an application, data-flow computing
provides the same capability as what spread-
sheets have been offering for decades.

With data-flow as driving mechanism, there
could be a revolution similar to event-driven
programming in user interface development, but
permeating all the aspects of application devel-
opment this time around.

To achieve this, the distinction between data on-
file and in-memory has to be removed, which is
precisely what Ratcl’s “views” are for. This can
only be done by “taking the data out of Tcl”, i.e.
adopting a coding style whereby Tcl manage
dependency structures, but not directly the data
itself. This is nothing new: the same holds for
GUI components in Tk.

Getting data-flow working “all the way to the
GUI” will one day require some new “data
aware” widgets. Discussion on this is beyond the
scope of this paper.

- 9 -

Conclusions
This paper has presented some early results of Ratcl
and Rasql, two packages for Tcl that aim to simplify
data manipulation.

As several preliminary tests with Ratcl show, the per-
formance that can be achieved is at least an order of
magnitude higher than traditional databases.

The reason for this is that an “inverted” column-wise
data structure offers significant benefits for vector-
oriented data processing algorithms.

The consequence is that even when not using any
auxiliary “indexes”, many tasks will be surprisingly
efficient. This means that we can have your cake and
eat it too: the flexibility of not having to design rigid
data models up front, combined with performance
which exceeds most databases, and sometimes even
Tcl’s performance with it’s own data structures.

With Ratcl and Rasql, it becomes feasible to “just
start coding”, which is one reason why scripting lan-
guages can be so effective. This should of course not
be taken as an excuse to design scripted applications
badly, or worse, to skip the design phase entirely!

The column-wise format of persistent data makes
adding columns trivial and instant, and the very high
performance of joins, groupby, and sort means that
the usual agony of choosing just the right set of indi-
ces and entering SQL statements in just the right or-
der becomes a thing of the past.

What this means is that with data in Ratcl, you can
get the best of everything:

• Data structures which are easy to define and to
later extend or alter.

• Efficient operations on large amounts of data.

• Compact representations in memory and on file.

• Tcl-like performance as well as robust persistence.

Much of this is not new. People programming with
APL, J, and K have known for decades that a wide
range of processing tasks can be done far more effi-
ciently than is commonly known – and that a vector-
ized language can be extremely concise yet flexible.

What Ratcl and Rasql bring to the table is the ability
to get the best of both worlds. By introducing view
command objects as the one generic data structure for
everything, and by embedding this very tightly in Tcl,
the result is a system in which data manipulation be-
comes very convenient, avoiding the usual looping
idioms and dealing with entire data sets in one step.

Ratcl, and especially Rasql, are still in their infancy.
Although all results presented so far are based on
working code, that code still is being revised daily.

It is hoped that the main benefits (and trade-offs) of
the approach presented here will help others see how
the impedance mismatch between traditional database
systems and a programming language such as Tcl can
be reduced, by using “views” as general-purpose data

structure, combined with relational algebra, set
operators, and array operators.

The Vlerq project which has become the founda-
tion of Ratcl and Rasql has its own home page on
the web at http://www.vlerq.org - a wiki-based
area for all discussion and news related to this
project.

All software described in this paper is available
under the MIT open source software license.

Acknowledgments
I would like to thank Mark Roseman and Steve
Landers for the many discussions which led to
the design of Ratcl, Rasql, and Vlerq over the
years. I would also like to thank them for their
help and review of this paper.

Much of the Vlerq architecture stems from the
experience gained with the Metakit database li-
brary in over a decade. I would like to thank
everyone who directly or indirectly helped me
refine and improve that system, often simply by
pushing for more performance or identifying
subtle bugs and design limits.

A very big thank you also to Mike Doyle and
Eolas Technologies Inc, for funding the Vlerq
project since early 2005, which has allowed me
to make very substantial and rapid progress with
the Ratcl and Rasql software.

References
Ratcl home – http://www.equi4.com/ratcl.html

Rasql technology preview and online demo –
http://www.equi4.com/preview/

Metakit – embedded database extension for Tcl
(Mk4tcl), http://www.equi4.com/metakit.html

The Tcl'ers Wiki - a collaborative web site for the
Tcl community, http://wiki.tcl.tk/

NAP – Numeric Array Processor by Harvey
Davies, http://wiki.tcl.tk/4015 /
http://tcl-nap.sourceforge.net/

TclRAL – by Andrew Mangogna,
http://wiki.tcl.tk/12348 /
http://tclral.sourceforge.net/

© 2005 Jean-Claude Wippler <jcw@equi4.com>
[http://www.equi4.com/docs/tcl2005e/ratcl.pdf]

- 10 -

Ratcl & Rasql
Jean-Claude Wippler

The Netherlands

The Data Dilemma

data on disk

permanent

passive

data in memory

running apps

modifiable

OFF

ON

Everything in Tcl

application startup and exit:

 array set mydata [read $fd]
 puts $fd [array get mydata]

sluggish - doesn’t scale

risky - lose all if write fails

structure? search? share? speed?

Everything in a DB

learn a new language & mindset

which DB, pick ONE and stick with it

startup - can take a lot more code

copy, copy, copy data from DB to Tcl

copy, copy, copy data from Tcl to DB

design structure first - or be sorry later

Relational Algebra

best intro I’ve seen:

!http://en.wikipedia.org/wiki/
!! ! ! ! ! ! Relational_algebra

can do everything with 6 primitives:

 select, project, product,
 union, difference, rename

could RA be what SQL should have been?

Ratcl

stay in Tcl, think in Tcl, code in Tcl

manipulate data, still on disk

access managed by Ratcl

lots of data manipulation operators

relational, set-wise, vectors

transactions - commit/rollback, ACID

Implications

you control the data, but don’t own it

learn to work with “views”

stop writing loops to find & process

think relational, set-wise, “wham!”

large speed & memory-use benefits

no hostages - can always import/export

Views

A view:

rectangular “array”, “table”

named columns uniform type

rows 0 .. N-1 vertical: efficient

name age shoesize

John 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

The “wham” mindset

Relational product of views A and B:

name age

John 12

Mary 15

Bill 18

A:

shoe size

left 32

right 38

B: #A = 3

#B = 2

name age

John 12

Mary 15

Bill 18

John 12

Mary 15

Bill 18

shoe size name age

John 12

Mary 15

Bill 18

John 12

Mary 15

Bill 18

shoe size

+ =

A x B:

left 32

right 38

left 32

right 38

left 32

right 38

left 32

right 38

left 32

right 38

left 32

right 38

Views are virtual

the “product” example uses NO memory

it doesn’t read any data

data is read when accessed

memory-mapped files, no copying

cached by the O/S, same as “paging”

combined operations are also virtual

Data exchange

Tcl to view - “real data”
! set r [vdef name age shoesize {Paul 15 32}]

! set v [vdef name age [array get mydata]]

view to Tcl - “real processing”
! puts [view $v sort | get]

! view $v each c { puts $c(name) }

! array set a [view $v where {age >= 16} | get]

Meta-views

Every view has a meta-view ...

... which describes its structure

View: Meta-view:

#columns in view = #rows in meta-view

name age shoesize

John 12 32

Mary 15 35

Bill 18 42

type name subv

I shoesize -

S name -

I age -

Eva 13 32

Julia 16 34

Repeating data

let’s add a field to list their friends:

how do you represent this?

name age shoesize

John 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

friends

Mary, Eva, Julia

Eva, Bill

Mary

John

Mary

Repeat the rows?

store each friend in a row copy:

can (will!) become inconsistent - BAD

name age shoesize

John 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

friend

Mary

Eva

Mary

John

Mary

Bill

Eva

Julia

Mary 15 35

John 12 32

John 12 32

Relational: normalize

use two relations, link by common key:

Master: Detail:

simple & consistent

keys may require a lot of space

name age shoesize

John 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

friend

Mary

Eva

Mary

John

Mary

Bill

Eva

Julia

name

John

Mary

Bill

Eva

Julia

Mary

John

John

Sub-views

embed 1:N in a hierarchical way:

still clean & tidy

more efficient in time & space

name age shoesize

John 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

friends

Mary

John

Mary

Eva

Bill

Mary

Eva

Julia

name

Ratcl can “flatten” …

subviews and expanded are equivalent:
$v =

view $v flatten friends =

name age shoesize

John 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

friends

Mary

John

Mary

Eva

Bill

Mary

Eva

Julia

name

John 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

Mary

Eva

Mary

John

Mary

Bill

Eva

Julia

Mary 15 35

John 12 32

John 12 32

name age shoesize friend

… and go back: “group”

grouping is inverse of flattening:
$v =

view $v group name age shoesize =

name age shoesize

John 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

friends

Mary

John

Mary

Eva

Bill

Mary

Eva

Julia

nameJohn 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

Mary

Eva

Mary

John

Mary

Bill

Eva

Julia

Mary 15 35

John 12 32

John 12 32

name age shoesize friend

Relational Join

the workhorse for normalized data:
$v =!! ! ! ! $w =

“classical” join result =

physical = “v & w” versus logical = joined

name age shoesize

John 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

friend

Mary

Eva

Mary

John

Mary

Bill

Eva

Julia

name

John

Mary

Bill

Eva

Julia

Mary

John

John

John 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

Mary

Eva

Mary

John

Mary

Bill

Eva

Julia

Mary 15 35

John 12 32

John 12 32

name age shoesize friend

Joins

a join is “N lookups in parallel”

joins produce subviews in Ratcl

no NULLs, yet equivalent

rely on flattening & grouping

think in very high-level: data shapes!

Ratcl’s Join

first, group repeated field to subviews ...
$w =!

 $wg =

view $w group name =

friend

Mary

Eva

Mary

John

Mary

Bill

Eva

Julia

name

John

Mary

Bill

Eva

Julia

Mary

John

John

name

John

Mary

Bill

Eva

Julia

friends

Mary

John

Mary

Eva

Bill

Mary

Eva

Julia

name

Ratcl’s Join - part 2

... then connect corresponding rows
$v =!! ! ! ! $wg =

view $v join $wg = (same result)

name

John

Mary

Bill

Eva

Julia

friends

Mary

John

Mary

Eva

Bill

Mary

Eva

Julia

name

name age shoesize

John 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

name age shoesize

John 12 32

Mary 15 35

Bill 18 42

Eva 13 32

Julia 16 34

friends

Mary

John

Mary

Eva

Bill

Mary

Eva

Julia

name

It’s all Relational

SQL
! SELECT * FROM data
! ! WHERE name = ‘John’
! ! ORDER BY age

Ratcl
! view $data where {name = ‘John’} | sort age

or maybe
! view $data where {name == “John”} | sort age

SQL & Rasql

(S)tructured - tables & joins

(Q)uery - “what”, not “how”

(L)anguage - standard notation

Rasql translates SQL to Ratcl view ops

thin layer to create an “access plan”

SQL?

1 standard? - N dialects!

optimization, trial and error

NULL, 3-valued logic

half a programming language

Rasql doesn’t try to be “big” SQL system

Inside Ratcl

guided by simplicity and performance

lessons from Forth, APL, and Metakit

“obsessively vector-oriented” design

tiny special-purpose virtual machine

portable implementation language

Minimalism

Forth & APL show that “less is more”

built on a very uniform data structure

tiny and fast mark/sweep GC

VM is < 1000 lines of C code

1000 more for vector ops

it’s all under the hood - Tcl is the API

How small?

VM is a 30 Kb C extension

Tcl wrapper is another 40 Kb

as starkit - which uses compression
 http://www.equi4.com/pub/vq/ratcl.kit

100 Kb for complete system

includes binaries for 5 platforms

Speed: think again

SQL: SELECT * FROM data WHERE name = ‘John’

“*” often reads too much

Ratcl: set v [view $data where {name = ‘John’}]

USE determines I/O: later & lazily

column-wise “inverted” storage

like having indexes on everything

How Rasql works

select name from students
 where age > 15
 group by shoesize
 having count(shoesize) > 1

1. map to groups 4. flatten result
2. collect counts 5. omit some ages
3. omit some counts 6. done!

Why it’s fast

1. load column of shoe sizes: 1 read

2. locate duplicates via hash: O(N)

3. load column of ages: 1 read

4. select specific age range: O(N)

5. logical AND, bitmaps: fast

6. Done!

How fast?

Join 161,127 x 47,079 on 1 int:
 Ratcl: 0.08 s, Metakit: 3.16 s

Find unique IP’s in 1,077,106 entries
 Ratcl 0.15 s, Tcl 3.7 s (lsort -unique)
! (~ 4 Mb) (~ 28 Mb)

Find 3 matches in 1,077,106 values
 Ratcl 1.66 s, Metakit 2.18 s, SQLite 3.85 s
! Ratcl 28 µS, SQLite 316 µS - indexed
! ! ! ! ! ! (create 37s, drop 3.2s)

Current status

Ratcl 0.92

it works, many operators

API has not been frozen yet

it’s not very robust or fast right now

maps MK datafiles, and writes dumps

Rasql - only an older preview

Progress

on the web as “Vlerq” research project

 http://www.vlerq.org/

good software is like good wine

consumed quickly just gets you drunk

take your time to enjoy its richness

most of my 2005 time goes into Vlerq

Biotcl − a framework for computing biology

Dr. Detlef Groth, MPIMG Berlin, Ihnestr. 73, 13149 Berlin, dgroth@molgen.mpg.de

ABSTRACT

Currently from the four scripting languages Perl, Python, Tcl and Ruby only for Tcl there is no structured
framework of tools and applications for computational molecular biology. This is a surprising issue because of
its clear syntax, high portability and extensibility Tcl is an ideal choice as a scripting language for biological
problems. Furthermore with the Starkit [1] approach Tcl has an excellent system to deliver applications and
libraries to the researcher without going into a nightmare of installation procedures and prerequisites. The
foundations of the Biotcl project will be Snit, Itcl and possibly a Tcl−only emulation of Xotcl as object
oriented extensions, Metakit databases as RDBMS, a small embedded webserver in order to present the
documentation and graphical interfaces for the applications. The project will restrict furthermore mainly to
Tcl only libraries in order to achieve maximum portability. However for speed and memory issues there will
be some compiled extensions available separately as well. Applications, libraries and documentation
(Wiki/HTML format) will be embedded in one single Starkit file in order to simplify installation and
maintenance as much as possible.

INTRODUCTION

In contrast to Perl [2], Python [3], Ruby [4] and Java [5] Tcl has no actual framework for solving biological
problems. In the past several bio−applications has been written like Biowish [6], GRS [7] or MASIA [8].

There are various problems with the current software approaches used by other scripting languages like:

installation hell•
difficult to keep different version of the same package•
platform dependencies•
deep directory trees•

Tcl could resolve some of those difficulties. However currently a consistent application programming
interface is missing. Tcl has several advantages which makes it suitable for programmers and ordinary users
(biologists) like:

clear syntax•
great introspection capabilities•
dynamic code generation•
flexible and modern object oriented extensions•
high level network functions•
Starkit−technology for easy deployment•

In Tcl it is possible to create or redefine code at runtime and to inspect the values of variables or the
definitions of classes or procedures. This make it suitable for developing distributed applications where
otherwise debugging is much more difficult to achieve. An other advantage is the possibility to create stand
alone applications and libraries with the Starkit technology. Applications, documentation and libraries are
wrapped into one file which might be portable to all platforms where the Tclkit runtime exists (currently about
20 platforms). The user has just to download two files which can be placed anywhere. No further installation
step is necessary. The application is just run with a "/path/to/Tclkit /path/to/application.kit parameter ..."
command. A developer might just use "source /path/to/application.kit" inside a Tcl−program in order to use

Biotcl − a framework for computing biology

1

http://www.equi4.com
http://www.bioperl.org
http://www.biopython.org
http://www.bioruby.org
http://www.biojava.org
http://www.bioinformatics.org/~thomas/software/biowish/
http://www.bioinformatics.org/~thomas/software/grs/
http://mini.net/tcl/6914

the libraries. If the application is updated just this kit−file must be redownloaded. Because all necessary
libraries are wrapped as well into the kit−file it is not possible that using a new kit−file might give problems
for an older file due to library incompatibilities or interferences with other installed libraries. Such problems
are common for scripting languages like Python and Perl where the libraries are stored inside a deep hierarchy
and newer packages are overwriting older packages.

Furthermore the documentation will be included as well inside the Starkit avoiding the problem of grabbing
and maintaining the documentation separately. In order to show the documentation a little webserver is used
having the advantage that the user can use the most sophisticated tool − a web browser − to view and manage
the documentation. The documentation is provided as ing the problem of grabbing and maintaining the
documentation separately. In order to show the documentation a little webserver is used having the advantage
that the user can use the most sophisticated tool − a web browser − to view and manage the documentation.
The documentation is provided as a writable Wiki documentation based on the famous Tclers−Wiki [9].

RDBMS

Data storage is an important requirement for applications. Tclkit comes with an inbuilt relational database
system called Metakit. The Tcl−API for accessing the contents of Metakit databases Mk4tcl [10] is quite
capable of supporting storage of a large amount of data in a structured and reliable way. However until now
an easy to use query language was missing for inserting and accessing the data inside the database.
Jean−Claude Wippler has taken several ways to simplify the access to Metakit databases like Oomk [11]
using Snit [12] and relational operations.

Although Oomk was a big step forward for programming Metakit databases most developers are more
familiar with SQL as a query language for databases. I therefore developed tsql4mk "Tiny SQL for Metakit"
[13] based on the relational operator provided by Oomk. Tsql4mk implements quite a subset of the
SQL−language. The tsql4mk−API is modelled after the SQLite−API which makes it possible to use tsql4mk
as a drop in replacement for SQLite where SQLite is not available. A typical session for tsql4mk would be:

 source tsql4mk.kit
 package require tsql4mk
 tsql4mk tsql dogtest.mk
 tsql eval "BEGIN TRANSACTION"
 tsql eval "create table dogs (name text, breed text,
 age integer, weight float, owner text)"
 tsql eval "insert into dogs (name,breed,age,weight,owner)
 values ('fido', 'spanish spaniel', 4, 9.5, 'Will')"
 tsql eval "COMMIT TRANSACTION"
 tsql eval "select * from dogs" v { puts [array get v] }
 weight 9.5 age 4 name fido * {name breed age weight owner {}}
 breed {spanish spaniel} owner Will # 0

Due to some memory leaks of the underlying Oomk−architecture, making it necessary to fix them manually, it
was unfortunately not possible to use a sophisticated scanner/parser system like fickle/taccle [14]. Fickle and
taccle are the Tcl equivalents of the tools for C/C++: flex and bison. Instead a handwritten scanner was used,
limiting therefore extensibility and maintenance of the library. For the required functions inside the
Biotcl−framework however the current implementation status of tsql4mk is sufficient. With the ongoing
vlerq−project [15] a successor of tsql4mk can be easily dropped into the Biotcl−kit.

WEBSERVER

The webserver inside the Biotcl−Starkit will be used for two tasks. At first it will be used to serve the
documentation for users − application documentation and for the developers − library documentations. As

Biotcl − a framework for computing biology

2

http://mini.net/tcl
http://www.equi4.com/metakit/tcl.html
http://www.equi4.com/oomk.html
http://www.wjduquette.com/snit/
http://goblet.molgen.mpg.de/tsql4mk
http://tcl.jtang.org/
http://www.vlerq.org

shown by the Wikipedia and the Tclers' Wiki, Wikis are very successful examples of cooperative
communities to write documentation. Therefore a Wiki will be the delivery platform for the documentation.
The Wikit Wiki implementation is a Starkit containing a little webserver and utilities to view the
documentation as a cgi process or inside a Tcl/Tk−application. I choose therefore the Wikit webserver as an
inbuilt webserver for Biotcl.

However the Wikit webserver had two drawbacks limiting it's use for the second task: building web
applications via HTML and crossbrowser javascript. The webserver could not serve static html−pages,
images, javascript files or stylesheets. For this reason a separate more sophisticated webserver had to be used
till recently. I removed this pitfalls by adding static page access to the Wikit webserver via some adjusted
code from the minihttpd webserver, part of the tclhttpd−webserver. Furthermore I was adding procedure to url
mapping in order to build GUI's for the Biotcl−applications.

We can provide javascript code if the webserver is started in the following way:

 WIKIT_JS=/javascript/jsPreColor.js ;
 export WIKIT_JS ;
 WIKIT_CSS=/css/sepia.css ;
 export WIKIT_CSS ;
 WIKIT_BASE=http://localhost:8015/wiki ;
 export WIKIT_BASE ;
 tclkitsh dgwikit.kit wikit.tkd −httpd 8015

GUI

There are two natural choices for programming a graphical user interface (GUI) for Biotcl−applications. The
first is Tk, the second is using the webserver serving html pages as the application server and the webbrowser
as a client. The advantage of using Tk is it's rich set of widgets which can be used to build sophisticated
applications. The disadvantage is that it can be used only on one machine, if the users want to present its data
to more people, it is necessary to write a web based application. Therefore it is feasible to select the
webserver/webbrowser approach for building the GUI. It is possible later to tunnel certain parts of the
webserver through an existing browser like apache and to present data or services to the public.

A possible disadvantage of HTML for building user interfaces are that the capabilities of HTML for this task
are somehow limited. There are several ways to overcome this limitations like Java−applet, Active−X controls
or the Extensible User Interface Language (XUL). All those approaches have their drawbacks like high
memory requirements (JAVA) or being attached to a certain webbrowser. In contrast with the javascript
implementation, the Document Object Model and the XMLHTTP−request method of modern browsers (IE
5.5, Mozilla 1.4++ and Opera 8) currently exists a highly capable programming platform for building rich user
interfaces in a very dynamic way.

After studying the excellent behaviour implementation of Dean Edwards for Mozilla I decided to implement a
similar but less complicated framework for the three major browser platforms (IE,Mozilla/Firefox/Opera)
which strictly separates the javascript code from the HTML code. The result of this work are jsComponents
which can be easily used to build richer user interfaces in HTML like trees, sortable tables, tabboxes, tooltips
and much more. These controls can be used inside Biotcl to program the GUI.

Biotcl − a framework for computing biology

3

http://localhost:8015/wiki

 Example of a collapse widget:
 <div class="JSCollapse">

 HTML Authoring

 Beginner's Guide
 Authoring Tips
 HTML Coding Tips

 <li class="opened">HTML References

 Elements
 Character Sets

 </div>

DOCUMENTATION

Documentation is always the most important part which determines the success or failure of a certain project.
Using a Wikit Wiki inside the Biotcl−kit is a natural approach for delivering information to the user. The
advantages are: more people can contribute to the documentation, the user can use the excellent full text or
title search capabilities of the Wiki, the user can easily bookmark important informations and the user can use
a very sophisticated application to view the documentation − the webbrowser. It is even possible to modify
the existing documentation inside the downloaded Biotcl kit in order to store notes of the user directly where
they are needed.

With the added functionality of accessing static html−pages, stylesheets, images an javascript code the Wiki
can be even more tweaked and styled to increase pleasure and reuse. The possibility to style the Wiki should
not be underestimated. It is not only helpful to convince the user that a certain product is worth to being
investigated it also helps to divide visually different areas of the documentation for instance sections for users
and developers, therefore simplifying mental switching between different tasks.

LIBRARIES

There is a distinction between applications and libraries. Some of the libraries have interfaces to the user, so
there are both libraries and applications at the same time. Developers can directly call the libnsible to translate
the various tokens submitted via the scanner and to build a Metakit database. This database contains a index
table which is used to retrieve entries of the datafile for a certain id. In order to simplify the building of web
applications for each id a md5−hash is put into the index table as well. Furthermore a metadata table is
generated which contains data for the datafile at all. For a blast datafile this could be for instance the type of
blast program used, the chosen cutoff e−value and so on. The parser is the interface presented to the user − it
is also an application which can be invoked from the console. If the parser is called for a certain datafile for
the first file the scanner/consumer classes are invoked and the database is build. Afterwards the requested
informations are submitted to the user. Example for a FastaParser getting a sequence for a certain id:

 FastaParser fp −fastafile /mypath/to/orf_trans.fasta.tmp \
 −indexfile /myhome/data/orf_trans.fasta.tmp.mk
 puts [fp getSeq YAL001C]
 >YAL001C TFC3 SGDID:S0000001, Chr I from 151168−151099,151008−147596, ...
 MVLTIYPDELVQIVSDKIASNKGKITLNQLWDISGKYFDLSDKKVKQFVLSCVILKKDIE
 VYCDGAITTKNVTDIIGDANHSYSVGITEDSLWTLLTGYTKKESTIGNSAFELLLEVAKS

Biotcl − a framework for computing biology

4

APPLICATIONS

There are currently the main types of applications. The runner applications are presenting an easy to use
interface for the user via a command line or via the HTML−GUI. They can be easily configured via the Biotcl
inifile as described inside CONFIGURATION. Furthermore additional runner sections can be added to the
inifile so that the user can easily add its own favourite applications. The example for a user to access the a
certain sequence of a fastafile would be:

 /path/to/tclkit biotcl.kit FastaParser
 −fastafile /mypath/to/orf_trans.fasta.tmp \
 −indexfile /myhome/data/orf_trans.fasta.tmp.mk
 −command 'getSeq YAL001C'
 >YAL001C TFC3 SGDID:S0000001, Chr I from 151168−151099,151008−147596, ...
 MVLTIYPDELVQIVSDKIASNKGKITLNQLWDISGKYFDLSDKKVKQFVLSCVILKKDIE
 VYCDGAITTKNVTDIIGDANHSYSVGITEDSLWTLLTGYTKKESTIGNSAFELLLEVAKS
 GEKGINTMDLAQVTGQDPRSVTGRIKKINHLLTSSQLIYKGHVVKQLKLKKFSHDGVDSN
 PYINIRDHLATIVEVVKRSKNGIRQIIDLKRELKFDKEKRLSKAFIAAIAWLDEKEYLKK

Parser applications are extracting information from biological data or from the output of biological programs
which can be stored for later processing or piped into other applications.

Browser applications can be used to interactively explore informations via the HTML−GUI
(GeneOntolBrowser). They must be configured as well via the inifile. See CONFIGURATION for more
details.

INSTALLATION

The user has to download a Tclkit appropriate for its platform from http://www.equi4.com . Afterwards the it
should be checked that the Tclkit is working properly. Try on the console:

 /path/to/tclkit
 % puts Hello
 % package require Itcl

If everything is fine it is time to download the biotcl.kit from http://goblet.molgen.mpg.de/biotcl and put it
somewhere.

As the final step it is useful to ensure that the steps has been done successfully via executing:

 /path/to/tclkit /path/to/biotcl.kit −httpd 8016

and to view the documentation at: http://localhost:8016/

If the port address is in use you should select an other one which is higher than 8016.

CONFIGURATION

The configuration is done via ini−files. Normally the inifile is located at the uses home directory. However in
order to use a different inifile the filename can be given at the command line:

 /path/to/tclkit /path/to/biotcl.kit −infile /home/www/user/biotcl.ini −httpd 8018

Biotcl − a framework for computing biology

5

http://www.equi4.com
http://goblet.molgen.mpg.de/biotcl
http://localhost:8016/

This can be used to present different interfaces for instance one version to publish results to the community
and an other inifile for your current work and so on.

Ini−files have the advantage that they are human readable and can be easily edited. Here an example for the
configuration of the blastrunner:

 [BlastRunner]
 PROGRAM=blastall
 TYPE=blastn,blastp,blastx,tblastn,tblastx
 DATABASE=uniprot,/home/user/data/myseqs.fasta,yeast
 EVALUE=1e−10,1e−20,1e−30,1e−40,1e−50,1e−60,1e−70,1e−100
 FASTAFILE=
 OUTPUT=
 RUN=$PROGRAM $TYPE −d $DATABASE −i $FASTAFILE −e $EVALUE −o $OUTPUT

If the program is running via the console the user will be asked for each parameter passed to the program. If
the value is empty than the user will be asked to select the value manually. If the user is using the
HTML−GUI a form is presented which let the user select the appropriate options via the GUI. For empty
values a entry field is presented, if the key ends with FILE a file select entry is presented o the user. From
those data a command line is constructed which can be easily pasted into the console. The RUN key is used to
assemble the command line. This interface is build in that way that the user can easily drop in own sections
for runners without the need to hard code the runners into the system. In fact any console program can be put
in not only biological relevant ones.

Browser applications must know where there data to be display are stored. The entry for the
GeneOntolBrowser is structured as follows:

 [GeneOntolBrowser]
 OBOFILE=/home/user/data/gene_ontology.obo.2005−04−01.gz,gene_ontology.obo.2005−01−01.gz
 GOAFILE=/home/user/data/gene_association.goa_mouse.gz,...

Here the user can select obofile/goafile pairs an interactively explore the data.

LICENSE

This software and documentation is distributed under the MIT License, as documented in
http://www.opensource.org/licenses/mit−license.php .

CONCLUSIONS

The presented framework has some unique advantages over existing similar toolkits. Those are:

easy deployment and administration•
several versions of Biotcl tools and libraries can be used•
applications, libraries and documentation in one file•
crossplatform Starkit for more than 20 platforms•
console or GUI interface for the applications can be used•
embedded webserver for presentation of data•

A user hast just to download and can immediately start using the biotcl−kit. If the user/developer wants to
update the kit he needs just to download the Biotcl file again and to store it separately from older versions. If
it is desired to use the older version again just use the older file. All libraries are stored inside the kit file. So
you can keep different versions without hassle. The same Biotcl−kit can be used on about 20 different

Biotcl − a framework for computing biology

6

http://www.opensource.org/licenses/mit-license.php

platforms from AIX64 to Win32 providing support for different operating systems and different processor
architectures.

The interface is either graphically from the command line. The embedded webserver allows to present the
data to the community without further trouble or the need to download any other software.

The documentation is included inside the application and can be easily viewed and searched via the
webbrowser. The user can drop in it's own documentation into the manual to store notes etc.

Taken together Biotcl will provide an excellent platform for performing reliable analysis of biological
problems.

ACKNOWLEDGEMENTS

At first I would like to thank Jean−Claude Wippler for very helpful discussions and providing all those great
technologies like Tclkit, Metakit and the Wikit Wiki.

Further I would like to thank William H. Duquette for Snit and answering all my questions about using it. D.
Richard Hipp I would like to thank for his work on SQLite − a wonderful small database which inspired my to
program tsql4mk as a poor man alternative for SQLite.

REFERENCES

Tclkit http://www.equi4.com/tclkit•
Metakit http://www.equi4.com/metakit.html•
Mk4tcl http://www.equi4.com/metakit/tcl.html•
Oomk http://www.equi4.com/oomk.html•
tsql4mk http://goblet.molgen.mpg.de/tsql4mk•
SQLite http://www.sqlite.org•
Snit http://www.wjduquette.com/snit/•
fickle http://wiki.tcl.tk/fickle•
taccle http://wiki.tcl.tk/taccle•
Tcl software for biology http://mini.net/tcl/biotcl•

Biotcl − a framework for computing biology

7

http://www.equi4.com/tclkit
http://www.equi4.com/metakit.html
http://www.equi4.com/metakit/tcl.html
http://www.equi4.com/oomk.html
http://goblet.molgen.mpg.de/tsql4mk
http://www.sqlite.org
http://www.wjduquette.com/snit/
http://wiki.tcl.tk/fickle
http://wiki.tcl.tk/taccle
http://mini.net/tcl/biotcl

Biotcl − Framework

Dr. Detlef Groth

Table of Contents

Biotcl − Framework for Computing Biology...1

Dr. Detlef Groth...1

Max−Planck−Institut for Molecular Genetics Berlin, Germany...........1

Outline...2

Motivation..3

Syntax..4

Prerequisites...6

Biotcl − Framework

i

Table of Contents

Biotcl − Framework for Computing Biology

Architecture..7

Metakit RDBMS..8

TSQL4MK...9

TSQL4MK console..10

TSQL4MK library...12

Parser Infrastructure...13

Biotcl − Framework

ii

Table of Contents

Biotcl − Framework for Computing Biology

Tcl−Scanners...14

WC with ifickle: iwc−fickle.fcl...15

Scanner Usage..17

Source iwc−fickle.tcl...18

WC−Results...21

FastaScanner..22

Biotcl − Framework

iii

Table of Contents

Biotcl − Framework for Computing Biology

Scanner−Results...23

Database Structure − dgMKViewer...24

Webserver..25

Webserver−Implementation...26

GUI − JSComponents..29

Downloading == Installation...31

Biotcl − Framework

iv

Table of Contents

Biotcl − Framework for Computing Biology

Configuration...32

Status..33

Scanner−Parser Status..34

Outlook..35

Acknowledgement...36

About Me...37

Biotcl − Framework

v

Table of Contents

Biotcl − Framework for Computing Biology

Note..38

Biotcl − Framework

vi

Biotcl − Framework for Computing

Biology

Dr. Detlef Groth

Max−Planck−Institut for Molecular Genetics

Berlin, Germany

Outline

Motivation•
Implementation•

RDBMS♦
Parser♦
Webserver, GUI, Documentation♦
Packaging♦

Status•
Outlook•

Motivation

Tcl Perl Python

Syntax +++ + ++

OOP +++ + ++

Delivery +++ − −

Community ++ +++ ++

Maintainance +++ + +

Syntax

Main datatype creation.Perl:

 my $x = 3 ;

 my @y = ('Spot', 'Spike', 'Fufu', 'Waldi');

 my %z = (Mouse => 'Jerry', Cat => 'Tom', Dog => 'Spot');

Python:

 x = 3

 y = ['Spot', 'Spike', 'Fufu', 'Waldi']

 z = {'Mouse' :'Jerry', 'Cat' : 'Tom', 'Dog' :'Spot'}

Tcl:

 set x 3

 set y [list Spot Spike Fufu Waldi]

 array set z [list Mouse Jerry Cat Tom Dog Spot]

Prerequisites

Delivery Platform: Starkit•
SQL−RDBMS: oomk+snit −> tsql4mk•
Scanner: itcl+fickle −> ifickle•
Webserver: wikit−httpd + minihttpd −> bhttpd•
GUI−Interface: Javascript+HTML −> JSComponents•
Documentation: wikit based wiki•

Architecture

Metakit RDBMS

views alias tables•
rows•
properties alias columns•
cursors•
simple but flexible API•
but no query language•
Oomk provides relational algebra•
tsql4mk : Tiny SQL For Metakit•

TSQL4MK

snit::type tsql4mk•
on top of Oomk•
api modeled after sqlite api•
drop in replacement for sqlite•
tsql4mk starkit is:•

console application♦
library♦
webserver♦

TSQL4MK console

 −− file test.sql

 BEGIN TRANSACTION;

 create table dogs (name text, breed text, age integer,

 weight float, owner text);

 INSERT INTO dogs VALUES('fido','spanish spaniel',

 4,9.5,'Will');

 INSERT INTO dogs VALUES('fido II','spanish spaniel',

 1,3.5,'Will');

 ...

 COMMIT;

 cat test.sql | tsql4mk.kit test.mk

 $ tsql4mk.kit test.mk \

 "select * from dogs where owner == 'Will'"

 name breed age weight owner

 fido spanish spaniel 4 9.5 Will

 fido II spanish spaniel 1 3.5 Will

 susi retriever 6 12.0 Will

 spot dalmatian 12 18.0 Will

TSQL4MK library

 (tsql4mk) 5 % source tsql4mk.kit

 (tsql4mk) 6 % package require tsql4mk

 0.1.4

 (tsql4mk) 7 % tsql4mk tsql test.mk

 ::tsql

 (tsql4mk) 8 % tsql eval \

 "select owner from dogs group by owner" v \

 { puts [array get v]}

 * {owner group_owner} group_owner ::view7 owner Detlef # 0

 * {owner group_owner} group_owner ::view8 owner Jean # 1

 * {owner group_owner} group_owner ::view9 owner Jeff # 2

 * {owner group_owner} group_owner ::view11 owner Will # 3

Parser Infrastructure

Tcl−Scanners

fickle − by Jason Tang , GPL but Scanner free•
Pros: no library dependencies, flex−like file input, faster♦
Cons: no encapsulation♦

ylex: by Frank Pilhofer , License: Tclish•
Pros: encapsulation via incrTcl−class♦
Cons: no flex−like input, slower, string input only♦

ifickle: by Tang/Groth, License: see Fickle•
Pros: see fickle, ylex;♦
Cons: none of fickle's, ylex's♦

WC with ifickle: iwc−fickle.fcl

 %{

 #!/usr/bin/tclsh8.4

 public variable nline 0

 public variable nword 0

 public variable nchar 0

 %}

 %buffersize 1024

 %%

 \n { incr nline; incr nchar 2 ; }

 [^ \t\n]+ { incr nword; incr nchar $yyleng ;}

 . { incr nchar;}

 %%

 if {[llength $argv] == 0} {

 puts stderr "usage wc−fickle inputfile"

 exit 0

 }

 if {[catch {open [lindex $argv 0] r} yyin]} {

 puts stderr "Could not open [lindex $argv 0]"

 exit 0

 }

 set sc [iwcfickle \#auto −yyin $yyin]

 $sc yylex

 puts [format "%7d %7d %7d %s" \

 [$sc cget −nline] \

 [$sc cget −nword] \

 [$sc cget −nchar] [lindex $argv 0]]

 close $yyin

Scanner Usage

 $ tclkit ifickle.tcl iwc−fickle.fcl

 $ tclkit iwc−fickle.tcl iwc−fickle.fcl

 26 102 601 iwc−fickle.fcl

 $ wc iwc−fickle.fcl

 26 102 627 iwc−fickle.fcl

Source iwc−fickle.tcl

 package require Itcl

 itcl::class iwcfickle {

 public variable nline 0

 public variable nword 0

 public variable nchar 0

 variable yytext

 variable yyleng

 variable yyindex

 variable yylineno

 public variable yyin

 public variable yyout

 ...

 constructor ...

 method yywrap {} {}

 method ECHO {{s ""}} {}

 ...

 method yylex {} {}

 method input {} {}

 }

 itcl::body iwcfickle::yywrap {} {

 return 1

 }

 ...

 itcl::body iwcfickle::yylex {} { ...

 ...

−−−−

 set sc [iwcfickle \#auto −yyin $yyin]

 $sc yylex

 puts [format "%7d %7d %7d %s" \

 [$sc cget −nline] \

 [$sc cget −nword] \

 [$sc cget −nchar] [lindex $argv 0]]

 close $yyin

WC−Results

Mode/Bytes 1 10 100 1000 10000 100000

tcl−fickle 0.361 0.362 0.396 0.635 1.948 14.990

tcl−yeti 0.824 0.826 0.861 1.161 4.230 36.344

tcl−ifickle 0.720 0.717 0.746 0.955 1.987 12.861

FastaScanner

 >ENSMUST00000070533 cdna:novel chromosome:NCBIM33:1:3220 ...

 GGGCTCACCCTCTTCTTCGTGGTGCTGGGCTCCCTTTCTGTGCAAGTGTTCAGCTTCCGC

 TGGTTTGTGCATGATTTCAGCACCGAGGACAGCTCCACGACCACCACCTCCAGCTGCCAG

 CAGCCTGGAGCAGATTGCAAGACGGTGGTCAGCAGTGGGTCTGCAGCCGGGGAAGGCGAG

 GTTCGTCCTTCCACGCCGCAGAGGCAAGCATCCAACGCCAGCAAGAGCAACATCGCCGCC

 CCATCTCCTCCAAGGCTGCAGTACAAGGATGATGCCCTTATTCAGGAGAGGCTGGAATAT

 GAAACCACTTTATAA

 >ENSMUST00000073465 cdna:novel chromosome:NCBIM33:1:3673820:3 ...

 gccgtgtacttcgcggatgtgggaacggacatctggctcgcggtggactactacctgcgt

 ggccagcgctggtggtttgggctcaccctcttcttcgtggtgctgggctccctttctgtg

 caagtgttcagcttccgctgcaacggggccacccggaccagcggcaaacacaggtctgcg

Scanner−Results

scanner/kb 100 500 1000 2000 10000

fickle 0.32 1.05 2.21 3.77 18.24

ifickle 0.29 0.88 1.62 3.03 14.66

ylex 0.57 1.95 3.57 6.94 34.62

 biotcl.kit FastaParser −fastafile /path/to/100kb.fa

 −command 'getSeq ENSMUST0000073678'

 source biotcl.kit ; package require biotcl ;

 set fp [FastaParser \#auto −fastafile /path/to/fastafile]

Database Structure − dgMKViewer

Webserver

Wikit Documentation•
Static HTML Pages•
Cascading Stylesheets•
Javascript Support•
Image Support•

 biotcl.kit WebServer −httpd 8015

=> full fledged webapplications

Webserver−Implementation

GUI − JSComponents

Tree•
Collapse•
Tabbox•
TableSort•
Barchart•
Labelframe•
u.a•

Supports: IE5+6,Mozilla/Firefox 1.4+, Opera7+•
No need to code Javascript!!!•
Separation of code and content•

Downloading == Installation

Documentation•
biotcl.kit WebServer −httpd ...♦

Applications•
biotcl.kit XYZParser −command ...♦

Libraries•
source biotcl.kit ; package require biotcl ...♦

SQL−RDBMS•
ln −s biotcl.kit tsql4mk.kit ; tsql4mk.kit test.mk "select * from .."♦

Help•
biotcl.kit♦

Configuration

 $ head ../mytcl/biotcl.ini

 [FastaParser]

 01,FILE=/project/goblet/data/orf_trans.fasta.tmp(orf_trans)

 01,INDEX=/project/goblet/data/orf_trans.fasta.tmp.mk

 02,FILE=/project/goblet/data/orf_trans.fasta(orf_trans2)

 02,INDEX=/project/goblet/data/orf_trans.fasta.mk

 METHODS=getFasta,getTitles,getTitle

Status

Webserver −> ok•
RDBMS, tsql4mk −> ok,, released•
Scanner construction −> ok, release next week•
Applications −> in progress•
Parsers −> in progress•
official Release −> 2−3 weeks, at least 6 scanners•

Scanner−Parser Status

Lib Console GUI

Fasta + + +

Blast + − −

GeneOntology − − −

EntrezGene − − −

1 per day... − − −

Outlook

critcl, re2c for speed•
vlerq•
soap or xmlrpc services•
jsComponents for improved GUI•
wiki collaboration•
goblet system•
insitu annotator•

Acknowledgement

Jean−Claude Wippler http://www.equi4.com•
William H. Duquette http://www.wjduquette.com•
D. Richard Hipp http://www.sqlite.org•
Csaba Nemethi•
Georgia Panopoulou MPIMG Berlin•
Albert Poustka MPIMG Berlin•
Steffen Hennig RZPD Berlin•

About Me

 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004

 Laborant −> Biochemistry :) :)

 Army −−−−>

 Biotech/GeneTherapy Bioinform

 Programmer

 Perl ========−−−

 Tcl−−===

Note

This manual was written in Wikit−Wiki format and converted via an

ifickle−generated scanner into HTML. HTML was afterwards converted

into PDF usingHTMLdoc [http://www.easysw.com/htmldoc/] .

Sharpen : A Static Analysis Tool For Vignette's “TCL”

Brian Passingham
Passingham Software Ltd

327 Oxford Road
Macclesfield

Cheshire SK11 8JZ
England

E-mail: brian@passisoft.com

http://www.passisoft.com/sharpen.html

© Passingham Software Ltd, 2005

ABSTRACT

Early versions of the Vignette™ content management system (up to version 6) make use of an
extension of the Tcl programming language, which we shall refer to as “TCL” to distinguish it from
the mainstream Tcl language. We briefly discuss how various features of “TCL” can encourage a
particular set of “Frequently Made Mistakes”, leading to high development costs. Unfortunately,
“TCL” is not understood by the best and most popular Tcl IDEs, and so these cannot be used to
address these issues. We present a new tool, Sharpen, which can cope with the “TCL” extensions,
and discuss how it can be used to reduce the maintenance costs of those Vignette legacy sites still
using the “TCL”-based product. We also outline some possible future applications of the
technology.

Introduction - Vignette and “TCL”

Early versions of the Vignette™ content management system (up to version 6) make use of an
extension of the Tcl programming language, which we shall refer to as “TCL” to distinguish it from
the mainstream Tcl language. The behaviour described here is that of the most commonly
encountered configuration post V/5, in which interpreter re-use mode is enabled. We also assume
that the original StoryServer behaviour with respect to EVAL's use of backslashes and SET's use of
EVAL is present. V/6 provides options for more sensible functionality in these areas, but the costs
and risks of updating a codebase to make use of these options seem to deter companies from
making use of them, except, obviously, on new installations.

Sharpen : A Static Analysis Tool For Vignette's “TCL” 1

mailto:brian@passisoft.com
http://www.passisoft.com/sharpen.html

For a more complete description of the architecture of StoryServer, as the Vignette/TCL product
was initially named, refer to the Vignette documentation. For our purposes here all we need to
know is that a pool of page generator processes, each containing a Tcl interpreter, are used to
deliver dynamic web pages by evaluating “TCL” templates. Template code is held in a database,
and propagated to public-facing (“live”) and private (“development”) web servers. Typically, a
content management application is run on the “development” web servers and used to publish data
through to the live servers. Libraries of code may be included in templates through either the
INCLUDE command (for TCL code necessitating the use of EVAL) or the SOURCE command (for
normal Tcl code). In interpreter re-use mode, the SOURCE ... PERSIST command may be used to
load code once for the duration of a page generator's existence.

Each “TCL” template consists of text with Tcl commands embedded using []s. So far, so subst-like.
However, Vignette wished to make scripted HTML generation as easy as possible, and so also
introduced some control flow constructs of their own, aimed at the generation of text. A Vignette-
specific mechanism for long comments of the form [# ...] is also supported. Thus a simple template
generating a barely formatted table of some selected fiction might look like this:

 [# Template: Simple Template
 Path : /simpleminded/library
 ... further identification details ...]

<table>
[SEARCH TABLE books INTO bookDetails SQL “select * from library”
 FOREACH book IN [SHOW books] {
 [IF {[FIELD $book category] == “novel” && [BookSatisfiesUser $book]} {
 [# Generate a table row for each novel the user “likes”, according to their criteria]

 <tr><td>[FIELD $book author]</td>
 <td>[FIELD $book title]</td>
 <td>[FIELD $book date]</td></tr>
 }]
}]
</table>

Note that the bodies of the FOREACH and IF statements are treated in the same way as the
template itself – they are passed to the Vignette EVAL command.

Some Frequently Made Mistakes

In some ways the most important type of mistake made with StoryServer is the common-or-garden
Tcl coding error.

Web applications are all-too-commonly tested almost entirely by a black-box method. Path
coverage tends, therefore, to be weaker than one would wish. In the context of a language which is
parsed and compiled on demand this can lead to embarrassingly basic errors finding their way
through to live sites. For example, I have seen all-too-many page generation failures which have
causes as simple as this :

 [IF {[diceThrow] == 6} {
 <p>[string strange [SHOW text] 0 20]</p>

 }]

Sharpen : A Static Analysis Tool For Vignette's “TCL” 2

The frequent need to refer to characters needing a backslash is also often a cause of syntax errors,
since code within N levels of EVAL requires 2 to the power N backslashes to be used! Sixteen
backslashes look much like fifteen to the naked eye...

There are also subtler, Vignette-specific issues to contend with.

Consider the case where a developer omits a call to SOURCE a frequently called library.
Statistically, it is very likely that any particular interpreter in the development environment will
already have loaded the library. The code will only fail when the template is the first one called
from a page generation process. Once the failure has occurred, of course, it is more likely to occur
again, since a new page generator instance will be restarted...

There is also a similar, but thankfully rarer, problem in which code in a re-used library will only
work on its first call, since its use invalidates its own pre-condition.

Mismatches in data scoping and control flow behaviour between the Vignette commands and
“normal” Tcl can also cause problems – a full description of these would divert this paper unduly.
Suffice to say that best practice at StoryServer sites tends to frown on the excessive usage of SET
and SHOW.

If we're lucky (read disciplined!), the ease of making mistakes just leads to additional costs and
delays when the problem is detected in regression testing. If we're unlucky, parts of the live web
sites either fail completely, or misbehave in subtle ways. If we're really unlucky, there are enough
problems to start destabilizing the system to a point where the delivery of any web pages at all
becomes problematic.

For this reason alone, even a basic parser and usage checker for StoryServer can lead to important
quality improvements.

Unfortunately, the main Tcl IDEs such as ActiveState's TclDev and T-IDE (apologies to any I've
missed) provide no support for StoryServer. The issue of accessing code in a database can easily be
resolved, of course. The issue is that of parsing TCL. The precise syntax of Vignette's [#...]
comments is undocumented, and the excess backslashes of EVALed code defeat Tcl's own parser.

Implementation of Sharpen

For this reason we have implemented a parser package for TCL, ::sharpen.

We had initially hoped to build on Tcl's internal parser, as exposed by a Tcl interface in TclPro. This
is clearly the best way of guaranteeing a correct parse. However, experiments in this direction
proved the strategy not to be viable. The extra backslashes present (due to EVAL's backslash
escaping) in most TCL code cause real difficulties. Working with a “backslash eliminated” version
of the text, along with a map back to the original text, we made some headway, but abandoned the
approach after considering the memory overheads (StoryServer codebases can be big, since
multiple sites are often maintained in a single environment).

As a result our approach is broadly similar to that of the incomplete 'parsetcl', though our
representation of the parse tree differs considerably. We use an associative array to represent the
parse tree, mainly since our code needs to run in an 8.2 context when tightly integrated with
Vignette. We use a callback mechanism to reparse calls of procs which themselves have a
significant syntactic component. We were tempted to drive this mechanism by a file of rules, as
Nagelfar does, but decided that this might close the architecture - we intend to extend ::sharpen to

Sharpen : A Static Analysis Tool For Vignette's “TCL” 3

perform parses of several sublanguages.

We also implemented a Vignette package parsing package, ::vpkg, to cope with the serialized data
files produced by the transferproject utility used to move code and its meta-deta between
environments. (It seems likely here that we have duplicated the efforts of the TrapEd product,
which provides an editor for such packages.)

Current Capabilities of Sharpen

The current stable release of the Sharpen product consists of versions of the ::sharpen and ::vpkg
packages, along with an example tool, Sharpen/QA, which uses these to provide basic QA
facilities for Vignette TCL and Tcl templates, either individually, en masse, or from a package.

Sharpen/QA is a configurable tool for identifying quality assurance issues in Vignette TCL code,
with support for reviewing individual templates, packages, or entire codebases. Reports from
Sharpen/QA identify the procs defined and used by particular templates, allowing the cross-
checking of software releases against particular environments. In addition to the basic capabilities
of identifying syntax errors and usage problems, it is also possible to use Sharpen/QA to identify
common problems such as attempts to release code that contains inappropriate calls (such as the use
of ERROR_TRACE as a coarse-grained diagnostic). These static analysis features should reduce
errors when undertaking releases. They are also of continual use during the development process.
Integration with existing development tools may be possible, depending on the software used.

Sharpen/QA uses Csaba Nemethi's tablelist widget by default.

The above screenshot shows the Error frame following analysis of a codebase, with templates

Sharpen : A Static Analysis Tool For Vignette's “TCL” 4

shown along with the number of categorised issues found within them. When applied to the now-
defunct Sportal codebase (which supported the main Sportal portal as well as the websites of
numerous top-ranked European football teams), Sharpen's QA tool uncovered numerous templates
with serious problems that would have led to page generation failures, along with numerous
instances of inefficient or risky coding practices. Experience to date suggests that this pattern is
likely to be repeated at many Vignette TCL installations.

The following screenshot shows the Sharpen/QA template viewer, built using a Tk text widget
tagged by the parse tree and its annotations. Due to the particular tag settings in use, it shows
lightly syntax-highlighted TCL code (normal Tcl code in this example). Several errors have been
identified and highlighted in red.

The next screenshot shows the statistics of the Metrics frame, which can be used to readily identify
a site's most complex templates (since these are likely to require the most testing/development
effort). The statistics shown here are:

Sharpen : A Static Analysis Tool For Vignette's “TCL” 5

• File size - the simplest measure of a template's complexity, which can be misleading. There
is nothing inherently complex about a flat "terms and conditions" template, for example.

• Tree size - a more accurate measure of the template's complexity, recording the size of the
parse tree (as well as some overhead caused by repeated reparsing). There is some evidence
from Beizer that claims a significant correlation between this type of figure and the expected
number of errors caused by the code.

• EVAL depth - a Vignette-specific metric, recording the extent to which commands like
EVAL, IF, and FOREACH have been nested. Excessive nesting can lead to serious
degradation in performance - we would recommend the use of normal Tcl control structures
instead for all but the simplest of cases.

Future Work

The detailed parse trees obtained through ::sharpen and ::vpkg can be used as the basis of more
sophisticated tools – Sharpen/QA is a fairly straightforward application designed to test the
technology and provide immediate benefits to Vignette/TCL developers.

One key area for future work will be extending the tool's abilities in the area of data flow analysis.
There are of course, theoretical obstacles here – it is always possible for a Tcl developer to produce
an example of dynamic code that will defeat a particular analytical technique – but even a naïve
data flow analysis will work on the majority of StoryServer code and be capable of detecting
common errors, such as code branches in which particular variables are used before they are set.

We are considering supporting further metrics. In particular, interest has been shown in some form
of McCabe's cyclomatic complexity metric. We believe that the conventional definition of this will

Sharpen : A Static Analysis Tool For Vignette's “TCL” 6

need to be supplemented by a further metric indicating the presence of non-imperative coding
structures. A preliminary search of the literature has failed to find anything immediately suitable.

Operations to transform code whilst preserving its meaning are definitely possible, and offer great
potential.

Particularly useful operations might be:

1. To eliminate EVAL-based control structures such as IF and FOREACH in favour of a byte-
compilable procs which use normal Tcl control structures and append to build up a result
string. This can yield significant performance improvements.

2. Excess backslash elimination to allow code to be migrated to a V/6 installation using the
“sane backslashing” configuration. Such code is undoubtedly easier to read, and will be
easier to develop, simply by eliminating the common confusion as to how many backslashes
are required at a particular point.

3. Code instrumentation, allowing the construction of a StoryServer debugger and/or a code
coverage tool.

More ambitiously, a full-blown TCL refactoring editor is a tempting prospect, though, given the
limited time-frame within which Vignette will continue to support their TCL-based products, we are
unlikely to embark on this (for this purpose at least).

We intend to demonstrate some proof-of-concept implementations in some of these areas at the
meeting, and will publish these on http://www.passisoft.com after the meeting.

Sharpen : A Static Analysis Tool For Vignette's “TCL” 7

http://www.passisoft.com/

VCRI: A groupware application for CSCL
research

Jos Jaspers (J.Jaspers@fss.uu.nl)
Marcel Broeken (m.h.broeken@fss.uu.nl)

Educational Sciences
Utrecht University
The Netherlands

Paper presented at the European Tcl/Tk User Meeting
Bergisch Gladbach (Germany), 27-28 May 2005

Abstract

One of the main research topics of the Educational Sciences group
at Utrecht University is Computer Supported Collaborative Learning
(CSCL). The CRoCiCL* project1 is a research project, which focuses
on CSCL and the effects of visualization of social aspects of
collaboration processes in CSCL. The project started in September
2003 and will take about 4 years to complete. We have developed a
groupware environment called VCRI, which enables users to
collaborate and communicate. In this paper we will give an overview
of the development history of the VCRI, its features, problems we
encountered, our plans for the future and of course Tcl's part in all
this.

Introduction
Secondary school students in The Netherlands – as a result of
recent changes in the curriculum of the final years (the ‘study
house’) – are doing increasingly independent research in
preparation for college studies. The focus has shifted towards
working actively, constructively and collaboratively, as this is
believed to enhance learning. We have developed a groupware
computer environment that supports these research activities that
should fit well within this curriculum. The purpose of our research is
to investigate the effect of the computer supported research
environment and its tools on the final product through differences in
the participants’ collaboration processes.

VCRI overview

* The CRoCiCL project (Computerized Representation of Coordination in
Collaborative Learning)is funded by N.W.O. , the Dutch Organization for Scientific
Research, under project number 411-02-121

mailto:J.Jaspers@fss.uu.nl
mailto:m.h.broeken@fss.uu.nl

The VCRI (Virtual Collaborative Research Institute) is a client-server
based groupware environment providing a customizable tool-set.
Currently there are about 14 tools, ranging from a collaborative text
processor (Co-writer) to an instant messaging client (Chat). Any
subset of tools can be used, to give users true flexibility. Adding
new (third-party) tools is currently not supported but we are
working on providing a clear framework for developers to make this
possible.
One of the key ideas behind the VCRI is WYSIWIS (What You See Is
What I See). Users share most tools. A shared tool is continuously
synchronized and looks the same to every user. All users can edit
the content of the tool, for some tools even simultaneously. The
VCRI server is in charge of synching all tools. This mechanism of
sharing gives the impression of real-life collaboration, even in
cyberspace.

Figure 1 : The VCRI environment

Figure 1 shows a screen dump of the VCRI with some of tools. From
left to right and from top to bottom:

• Chat: a synchronous communication tool
• Co-writer: enables the participants to write the texts for the

different assignments
• Sources: Contains links to source materials for the

assignments
• Participation tool: provides participants with a graphic display

of their participation
• Source : A particular source was opened by the student

In this study, students have to collaborate in groups of 3
participants on a inquiry project about witches in medieval society
based on historical sources. The research question focuses on the
effects of participation awareness on the collaboration of the
students. The main purpose of the VCRI is to enable students to
collaborate on research projects, to help teachers to guide students
while they are collaborating, and to enable researchers to collect
data on the process of collaboration. Therefore all significant user
events are logged by the server to enable our researchers to study
the effects of our tools on the collaboration process. From the main
log file, MEPA2 files can be extracted. MEPA is an application for the
annotation, coding and statistical analysis of verbal or nonverbal
observational data or protocols, making analysis easier.

A bit of history
The VCRI is the result of years of developing different tools for CSCL
research at the Utrecht University. The first version was developed
around 1995. This version was written in Visual Basic. One of the
more surprising results was the feedback we received from our
subjects. They actually liked the collaborative writing. One of the
problems was the handling of socket communication. This proved
cumbersome and the program was rewritten in Delphi (Pascal). This
provided some improvement.
As we started on a subsequent project we sought an additional
programmer to speed up the development of the next version. We
found the company Equi4 willing to assist us. One of the first
decisions was the choice of the programming language. TCL was
chosen for two main reasons:

1. Our application deals mostly with texts
2. Our application uses networking

This makes TCL a natural choice. Development on the VCRI is
driven by the research demands. These demands tend to change
frequently, making it very important to use a flexible and

interpreted programming language like Tcl. Its tight integration with
Tk also makes it perfect for creating nice gui's with little effort.
Another key feature was cross platform availability, giving us the
ability to run in almost every school. The fact that Tcl is open source
also was an important pro. Last but not least, is Tcl's clear and
simple syntax making Tcl's learning curve steep.

Architecture
The VCRI is a client-server application. In principle, the client does
all the heavy work while a customized TclHttpd3 server distributes
updates and saves the tool content. Distributing the work over all
clients reduces the server's workload and optimizes cpu usage.
The client is kept as thin as possible, only providing a framework for
communicating with the server and a login window. On user login
the server queries a Metakit4 database for the toolset and lets the
client remotely source the corresponding files. This kind of remote
sourcing, or dynamic loading, makes rapid development and bug
fixes possible. Users can keep using the same client while still
getting all the updates and bug fixes from the server every time
they log in.
Client and server communication is http based. The client issues
http requests with Tcl commands to be executed by the server. The
server returns scripts to be executed on the client side as result for
the http request. The main reason for using this rpc like
communication is firewalls. Until recently, most schools which
participated in our experiments used KennisNet, a government
funded intranet. This KennisNet blocked almost all ports (incoming
and outgoing) and no exceptions were made. This prohibited a
permanent socket connection. Since http requests and port 80 are
always available, VCRI communication also became http based. The
clients poll the server in regular intervals to exchange information.

Packages used

In developing the VCRI we've used some extensions and tools to
provide the features pure Tcl/Tk was missing.
TclHttpd
This easily extensible and lightweight web server written in Tcl was
perfect for our VCRI server. It provides a basic framework for client-
server interaction giving us the room to focus on VCRI’s specific
features. VCRI's use of http(s) for server communication also made
TclHttpd a logical choice. At this time, our customized TclHttpd
server runs on (SUSE) Linux, Windows, and Mac OS X.
Starpack
Schools are more willing to join when the effort on their part can be
made as small as possible. An easy and straightforward installation
is an important way to reduce that effort. Packaging the VCRI client

as a Starpack makes installation equal to drag-and-drop and
deinstallation to delete. A Starpack is a Starkit plus a Tclkit runtime.
Starpacks are standalone executables, which run out of the box,
making them even easier to distribute and use than Starkits.5
Metakit
Earlier versions of the VCRI used plain files for storing persistent
data. Increasing complexity and scale of the VCRI have made
maintaining, archiving and tweaking these files more painstaking
and placed a need for more structured and consistent data storage.
We have decided to use a lightweight database for data storage.
We have chosen Metakit as our database because of its small size,
efficiency, ease of use, and its easy to use bindings for Tcl (Mk4Tcl
and Oomk6). Currently the VCRI server uses one Metakit database
to store data, although in some cases plain files are still used.

TkHTML
The VCRI has a number of tools, which generate or display HTML. At
first, we used OpTcl which is a Tcl extension to provide connectivity
to the resident hosts component model.7 Unfortunately, it only
works for COM on Windows, which clashes with our cross platform
objective. Another con is the inability to interact with OpTcl at a low
level, handling events and manipulating the HTML content.
Therefore, we decided to move away from OpTcl.
Finally, we have chosen TkHTML8, a Tcl extension written in C for
rendering HTML-content. As a side note, the TkTHML project has
recently been revitalized. CSS and XHTML support are among the
project's main priorities.

TkOGL
Some of the tools offer 3D visualizations. Since Tcl/Tk lacks 3D
capabilities we've used TkOGL9 for this purpose. TkOGL is a Tcl
extension written in C providing an interface to the OpenGL
framework. It currently works on Linux and Windows but a Mac OS
X build is also planned. TkOGL's most recent version (3.2) makes it
possible to use OpenGL commands without (almost) any
modifications.

[Incr]Tcl
[Incr]Tcl10 is a language extension for Tcl enabling object oriented
programming by introducing the notion of classes, objects and other
OO related terminology. By adding this extra layer of abstraction,
it's easier to write and maintain large programs.

Problems
During VCRI development, we have come across a number of
problems of which a couple will be highlighted in this paper. In the

next paragraph, we will present some of our solutions to these
problems.

Legacy code
As described in A bit of history the VCRI has come a long way since
1995. A lot of features and tools have been added but design wise
things have stayed the same. This unchecked growth has lead to
redundant and duplicate code, overlapping functionality and too
many dependencies. At the beginning of the CRoCiCL project the
decision was made to continue work on the current version of the
VCRI instead of starting from scratch. The complexity of this legacy
code has made it difficult to maintain and extend the code. Object
oriented programming has turned out to be the solution to this
problem.

User interface
The VCRI lacks eye candy. While this doesn't present a problem to
those who are only interested in functionality, it's an important
issue when designing software for teenagers, the target audience of
the VCRI. In our experiments, it's crucial that the students enjoy
working with the VCRI. An appealing user interface is key,
especially for those users who have grown up with cool looking
software. Another GUI related problem is the cross platform (and as
a result non-platform) and inconsistent look of the VCRI, making it
virtually impossible for users to make use of their knowledge of GUI
conventions on their platform of choice. Unfortunately, lack of time
and know-how makes it hard to fix this problem.
Platform dependencies
One of the main reasons for choosing Tcl is its cross platform
availability. As development continued, shortcomings in Tcl/Tk's
functionalities were patched using extensions. Not all of these
extensions were 100% pure Tcl; as a result platform dependencies
returned in the VCRI in the form of binary extensions such as
TkHTML and TLS.

Different interests
Finally, there's been the problem of different interests among the
project's stakeholders. Many times interests of users, researchers,
and developers have conflicted. For example, adding a feature for
research purposes can lead to unnecessary clutter (from the user's
point of view). Furthermore, keeping everything as lean as possible
makes logging all user events a bit tricky. Luckily, every one in the
CRoCiCL team has at least a little experience in both research and
programming, making it easier to resolve these conflicts by looking
at the problem from different points of view.

Printing
One of our more recent problems is printing. For our application, we
are looking for a printing solution to enable users to print the
content of any VCRI tool window on any printer on any platform.
Printing can be broken down into different sub problems. The first
sub problem is to create a printable version of a tool's content. The
other sub problem is letting the user (or the VCRI) select a printer
and finally sending this printable version to the selected printer.
Unfortunately, existing printing solutions only tackle one of these
sub problems and are almost always platform dependent.

Solutions
In this paragraph we will present solutions to some of our problems
mentioned in the Problems section. Please note that not all
problems are discussed.

Object oriented programming
Some of the problems we mentioned earlier are closely related. The
problems with complexity, redundancy and updating and using
legacy code have to do with unraveling the relations between
different chunks of code. Key ideas of object oriented programming
are modularity and refactoring. By putting related code in one place
(an object) interaction between different chunks of code is made
simpler and more transparent. When all related functionality is
provided by one object, the complexity of an application is greatly
reduced. Instead of maintaining and adding code at different places,
just one object needs to be changed when using an OO design. This
also addresses the problem of redundancy because it's easier to
recognize and fix redundancies.

Students and Tile
Another problem is the spartan look of the VCRI, which cripples the
user experience a bit. Since lack of time is still a problem, we have
been trying to involve students in information sciences and
interaction design. At the end of June, our application will be used
as the subject of an assignment on user testing as part of the
course usability engineering at Utrecht University. Hopefully, this
will provide usable feedback on usability and look of our GUI. In the
future, we hope to be a part of similar projects.
Tile11, an improved themeing engine for Tk, is another possible
solution for our GUI related problems. Tile can use so-called themes
to provide a consistent look and feel. Themes consolidate all GUI
options in one place, which minimizes the effort to create
customized themes for different platforms, experiments or users.

The Future
The VCRI will be used in at least two more experiments, one in
September 2005 and one in September 2006. After the experiments
and possible subsequent projects have finished, the VCRI will be
released as free (and maybe open source) software for educational
use. We're also planning to give third party developers the ability to
extend the VCRI with new tools and functionality. Our aim is to
release a product, which is easy to install (both client and server),
easy to use, cross platform and fun.

Summary
Using Tcl to create the VCRI has proven to be a good choice. It's
perfect for rapid prototyping, which has proved to be a pro in this
research project with constantly evolving demands and
requirements. The few shortcomings of Tcl we have encountered
have been fixed by third party extensions. Being half way in the
development of the VCRI in this project we can state that using Tcl
has contributed a great deal to the result!

References
1. CRoCiCL: Computerized Representation of Coordination in

Collaborative Learning, http://edugate.fss.uu.nl/~crocicl/
2. MEPA, http://edugate.fss.uu.nl/mepa/
3. Tcl Web Server, http://www.tcl.tk/software/tclhttpd/
4. Metakit by Equi4 Software,

http://www.equi4.com/metakit.html
5. Beyond Tclkit - simplified deployment of scripted applications

by Steve Landers, presented at the 2002 Tcl/Tk conference,
Vancouver, http://www.equi4.com/papers/skpaper1.html

6. Object-oriented Metakit for Tcl,
http://www.equi4.com/oomk.html

7. OpTcl, http://www2.cmp.uea.ac.uk/~fuzz/optcl/default.html
8. A HTML Widget For Tcl/Tk, http://tkhtml.tcl.tk/
9. TkOGL, http://hct.ece.ubc.ca/research/tkogl/tkogl/index.html
10. [incr Tcl] - Object-Oriented Programming in Tcl/Tk,

http://incrtcl.sourceforge.net/itcl/
11. Tile: an improved themeing engine for Tk,

http://tktable.sourceforge.net/tile/

Updated: April 26, 2005

http://edugate.fss.uu.nl/%7Ecrocicl/
http://edugate.fss.uu.nl/mepa/
http://www.tcl.tk/software/tclhttpd/
http://www.equi4.com/metakit.html
http://www.equi4.com/papers/skpaper1.html
http://www.equi4.com/oomk.html
http://www2.cmp.uea.ac.uk/%7Efuzz/optcl/default.html
http://tkhtml.tcl.tk/
http://hct.ece.ubc.ca/research/tkogl/tkogl/index.html
http://incrtcl.sourceforge.net/itcl/
http://tktable.sourceforge.net/tile/

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 1 of 19

Doing 3D with Tcl

Paul Obermeier
obermeier@poSoft.de

Abstract

This paper presents an approach called tclogl, which offers the 3D functionality
of OpenGL at the Tcl scripting level. Tclogl is an improved and enhanced
OpenGL binding based on the work done with Frustum by Roger E Critchlow.
The paper starts with an overview of existing 3D libraries with a Tcl sripting
interface. Different solution approaches are discussed and compared against the
given requirements. The choosen implementation, which relies heavily on SWIG,
is explained in detail in the main section of this paper. Common pitfalls when
programming OpenGL in Tcl, as well as open issues of this approach are shown.
Finally the results of a range of test programs and some demonstration
applications are shown.

1 Overview

Hardware accelerated 3D capabilities are available nowadays on nearly every PC. There is
also a broad range of programming libraries for doing 3D visualization, coming from different
application domains, like simulation, gaming, visualization or animation.
These libraries differ in availability on computer architectures and operating systems,
complexity and richness of supplied functionality, as well as the supported language
bindings.

There are two low-level (light-weight) graphic APIs in common use today: OpenGL and
DirectX. While DirectX from Microsoft is available only on machines running the Windows
operating system, OpenGL is running on PC's as well as on workstations. OpenGL also has
a software-only implementation called "Mesa", so you can run OpenGL based programs
even in virtual machines or over a network. OpenGL libraries are part of all major operating
systems distributions.
DirectX and OpenGL both offer a C based programming interface.

Based on one of these 2 low-level APIs lots of heavy-weight libraries exist, available as
OpenSource implementations as well as commercial versions, adding features like scene-
graphs, image handling, animation, advanced lighting models, etc.
Most of these libraries offer a C/C++ language binding, but only a few of them enable the
user to "script" a 3D application.

Some examples of 3D libraries offering a Tcl language binding are listed in the following
overview. The libraries are divided into the above mentioned categories heavy-weight and
light-weight. Only non-commercial libraries are taken into account.
You may also take a look at the OpenGL related Tcl'ers Wiki page ([5]).

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 2 of 19

Name Platforms Source Reference URL
Nebula X11/Win/MacX Yes http://www.nebuladevice.org
Fltk X11/Win/MacX Yes http://www.fltk.org
VRS X11/Win Yes http://www.vrs3d.org
VTK X11/Win/MacX Yes http://public.kitware.com/VTK
tk3d X11/Win Yes http://www.gm.com/company/careers/

career_paths/rnd/lab_manuf_sw.html
Table 1: List of heavy-weight 3D libraries with Tcl binding

Name Platforms Source Reference URL
Glut/Tk X11/Win Yes http://zing.ncsl.nist.gov/gluttk
Tkogl X11/Win Yes http://hct.ece.ubc.ca/research/tkogl/tkogl
togl X11/Win/MacX Yes http://togl.sourceforge.net
Frustum X11/Win Yes http://www.elf.org/pub/frustum01.zip
XBit Win No http://www.geocities.com/~chengye/

opengl.html
tom X11/Win Yes http://sourceforge.net/projects/om2t

Table 2: List of light-weight 3D libraries with Tcl binding

The following short excerpts from the libraries’ home pages should act as a brief introduction
and overview of their capabilities.

Nebula Device is an open source realtime 3D game/visualization engine, written in
C++. Version 2 is a modern rendering engine making full use of shaders. It is scriptable
through TCL/Tk and Lua, with support for Python, Java, and the full suite of .NET-capable
languages pending. It currently supports DirectX 9, with support for OpenGL in the works.
It runs on Windows, with ports being done to Linux and Mac OS X.

FLTK (pronounced "fulltick") is a cross-platform C++ GUI toolkit for UNIX®/Linux®
(X11), Microsoft® Windows®, and MacOS® X. FLTK provides modern GUI functionality
without the bloat and supports 3D graphics via OpenGL® and its built-in GLUT emulation.

The Virtual Rendering System is a computer graphics software library for
constructing interactive 3D applications. It provides a large collection of 3D rendering
components which facilitate implementing 3D graphics applications and experimenting
with 3D graphics and imaging algorithms. VRS is implemented as a C++ library.
Applications can incorporate VRS as C++ library based on the C++ API. In addition, we
provide a complete Tcl/Tk binding of the C++ API, called iVRS.

The Visualization ToolKit (VTK) is an open source, freely available software system
for 3D computer graphics, image processing, and visualization used by thousands of
researchers and developers around the world. VTK consists of a C++ class library, and
several interpreted interface layers including Tcl/Tk, Java, and Python.

Tk3D is a collection of extensions to Tcl/Tk that allow Tcl/Tk applications to
manipulate large numerical arrays and generate 3D graphic displays. The Tk3D suite
contains five packages, named Tns, Vtd, Fct, Fctr, and Tnsph. The "Tns" (tensor)
package is a numerical array extension. It provides facilities for efficiently manipulating
multidimensional arrays of numbers within Tcl. The Vtd package provides a Tk widget,
called a view3d widget, in which to display 3D graphic images. This widget's functionality
can be extended by adding "renderers," which are programs, written in C, for drawing
objects in a view3d widget.

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 3 of 19

GLUT/Tk is a "light-weight" system that seeks to leverage GLUT and Tcl/Tk by tying
them together in a stylistically consistent way with the addition of only a few commands to
each. The basic implementation strategy is to enable a GLUT process to launch an
independent Tk script. Thus, the built-in event loops of these two systems can operate as
usual and the resulting programming style (registering callbacks for given events) is
unchanged.

TkOGL is a package extension to the Tcl scripting language that enables a user to
utilize OpenGL, a multi-platform API for interactive 2D and 3D graphics applications.
TkOGL makes it possible for the user to display OpenGL graphics on the Tk canvas
along with other Tk widgets.

Togl is a Tk widget for OpenGL rendering. Togl allows one to create and manage a
special Tk/OpenGL widget with Tcl and render into it with a C program. That is, a typical
Togl program will have Tcl code for managing the user interface and a C program for
computations and OpenGL rendering.

Frustum implements a specialization of the Togl widget and a Swig generated Tcl
binding for the opengl and glu libraries to allow 3d modelling to be done entirely from Tcl.

XBit has implemented a Tcl shell for OpenGL primatives at Windows platforms.
The implementation focuses on scriptive programing in OpenGL rendering with an
emphasis on code reusability and GUI. It provides an OpenGL rendering engine whose
states can be changed with a greater flexibility during execution.

Tom is an OpenGL wrapper for Tcl/Tk. It provides Tcl procs very close to OpenGL
C functions.

2 Wish and reality

2.1 Requirements

As has been shown in the previous chapter, a number of 3D libraries with Tcl bindings are
currently available. But none of them fulfilled my personal wish list for a Tcl enabled 3D
library: It should give me the ability to integrate small- to medium- sized 3D content into my
Tcl/Tk based graphical user interfaces.

The prefered candidate should be an OpenGL based light-weight package, because OpenGL
is available on nearly every platform. 3D functionality should be scriptable with Tcl
commands and it should be possible to extend the functionality with C code. Graphical output
should be displayed in a Tk widget.

The following table summarizes the requirements of my favourite Tcl-3D library.

2.1.1 Requirement Comment
1 Light-weight Small code size, Tcl package.
2 License Source code availability under BSD license.
3 High automation No need to write lots of wrapper/glue code.

Easy upgrade to newer versions of the 3D library.
4 Portable Availability on many platforms.
5 C and Tcl IF Ability to program the library in both C and Tcl.

Easy interchange between Tcl and C code.
6 Up to date Buildable with actual tools and operating systems.

Table 3: Requirements for the Tcl 3D-library

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 4 of 19

2.2 Discussion of available solutions

Glut/Tk uses the GLUT library. Although GLUT is available on different platforms, it has not
been actively supported for quite some time. GLUT contains lot of operating system
dependent code covering features like event handling or simple menus, features that are
already handled by Tk.

Tom has not been updated for a while and consists of a hand-crafted interface to OpenGL.

Togl allows programming OpenGL in C only.

X-Bit is not available as source code.

Out of the 6 possible solutions listed in Table 2 the following packages left over for a more
detailled inspection:

Tkogl, currently maintained by the University of British Columbia in Vancouver and Frustum
by Roger E Critchlow Jr, which is not maintained by the author anymore.

Both have a very similar approach: Wrap the OpenGL core libraries GL and GLU with SWIG
([6]), and display the contents in a Tk widget.

The next table lists the features which didn’t fit my requirements:

TkOgl Frustum
Use of old SWIG version 1.1 Yes Yes
OpenGL header files modified Yes Yes
Handcrafted tables for mapping GLenums Ys No

SWIG 1.1 is not supported any more and may be not available on newer versions of
operating systems. The current SWIG version is 1.3.24 and this version offers lots of new
features.

Edited OpenGL header files need manual changes when compiling on platforms with a
newer OpenGL version, otherwise the additional commands are not available. Changes in
the API have to be done by hand, too.

OpenGL declares a bunch of enumerations, as can be seen in the following table. These
differ from platform to platform and keeping them up-to-date manually for the different
platforms and versions would not be reasonable.

GL_VENDOR SGI Microsoft Corporation
GL_VERSION 1.1 Irix 6.5 1.1.0
GLU_VERSION 1.2 Irix 6.5 1.2.2.0 Microsoft Corporation
Number of gl commands 485 352
Number of glu commands 68 67
Number of gl enums 1041 588
Number of glu enums 138 116

So the final decision was to follow the Frustum approach, which only needed two parts to be
cleaned up and extended.

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 5 of 19

3 Implementation

3.1 SWIG-based OpenGL wapper

The first task was to create a language binding for the OpenGL core libraries GL and GLU
with the help of SWIG ([6]). As stated earlier, it should work with an actual version of SWIG
and the OpenGL header files should not be touched.

Due to the new version of SWIG and it’s extended typemap features it was possible to
generate a consistent mapping between C functions and equivalent Tcl commands without
changing the OpenGL header files gl.h and glu.h.

The following tables show, how parameters and return values of the C based OpenGL
functions are mapped to Tcl command parameters and return values. Every type of
parameter is explained with a typical example.

Note:
• The notation TYPE stands for any scalar value (GLboolean, GLbyte, GLubyte,

GLshort, GLushort, GLint, GLuint, GLfloat, GLdouble). It is not used for
type void.

• The notation STRUCT stands for any C struct.

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 6 of 19

Input parameter GLenum
C declaration void glEnable (GLenum cap);

C example glEnable (GL_BLEND);

Tcl example glEnable GL_BLEND
glEnable $::GL_BLEND

GLenum as an OpenGL function input parameter can be supplied as numerical value or as
name.

Input parameter GLbitfield
C declaration void glClear (GLbitfield mask);

C example glClear (GL_COLOR_BUFFER_BIT);

Tcl example glClear GL_COLOR_BUFFER_BIT
glClear $::GL_COLOR_BUFFER_BIT

GLbitfield as an OpenGL function input parameter can be supplied as numerical value or
as name.

Note:
• A combination of bit masks has to be specified as a numerical value like this:

glClear [expr $::GL_COLOR_BUFFER_BIT | $::GL_DEPTH_BUFFER_BIT]

Input parameter GLboolean
C declaration void glEdgeFlag (GLboolean flag);

C example glEdgeFlag (GL_TRUE);

Tcl example glEdgeFlag GL_TRUE
glEdgeFlag $::GL_TRUE

GLboolean as an OpenGL function input parameter can be supplied as numerical value or
as name.

The mapping of the types GLenum, GLbitfield and GLboolean is handled in file
consthash.i.

Input parameter TYPE
C declaration void glTranslatef (GLfloat x, GLfloat y, GLfloat z);

C example glTranslatef (1.0, 2.0, 3.0);
glTranslatef (x, y, z);

Tcl example glTranslatef 1.0 2.0 3.0
glTranslatef $x $y $z

Scalar types as an OpenGL function input parameter must be supplied as numerical value.

The mapping of scalar types is handled by the SWIG standard typemaps.

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 7 of 19

Input parameter const TYPE[SIZE], const TYPE *
C declaration void glMaterialfv (GLenum face, GLenum pname,

 const GLfloat *params);

C example GLfloat mat_diffuse = { 0.7, 0.7, 0.7, 1.0 };
glMaterialfv (GL_FRONT, GL_DIFFUSE, mat_diffuse) ;

Tcl example set mat_diffuse { 0.7 0.7 0.7 1.0 }
glMaterialfv GL_FRONT GL_DIFFUSE $mat_diffuse

Constant pointers as an OpenGL function input parameter must be supplied as a Tcl list.

The mapping of const TYPE pointers is handled in file autoarray.i.

Note:
• This type of parameter is typically used to specify small vectors (2D, 3D and 4D) as

well as control points for NURBS.
• Unlike in the C version, specifying data with the scalar version of a function (ex.

glVertex3f) is faster than the vector version (ex. glVertex3fv) in Tcl.
• Note, that Tcl lists given as parameters to an OpenGL function have to be flat, i.e.

they are not allowed to contain sublists. When working with lists of lists, you have to
flatten the list, before supplying it as an input parameter to an OpenGL function. One
way to do this is shown in the example below.

set ctrlpoints {
 {-4.0 -4.0 0.0} {-2.0 4.0 0.0}
 { 2.0 -4.0 0.0} { 4.0 4.0 0.0}

}
glMap1f GL_MAP1_VERTEX_3 0.0 1.0 3 4 [join $::ctrlpoints]

Input parameter const GLvoid *
C declaration void glVertexPointer (GLint size, GLenum type,

 GLsizei stride, const GLvoid *ptr);

C example
static GLint vertices[] =
 { 25, 25, 100, 325, 175, 25,
 175, 325, 250, 25, 325, 325};
glVertexPointer (2, GL_INT, 0, vertices);

Tcl example
set vertices [VectorFromArgs GLint \
 25 25 100 325 175 25 \
 175 325 250 25 325 325]
glVertexPointer 2 GL_INT 0 $::vertices

Constant void pointers as an OpenGL function parameter must be given as a pointer to a
contiguous piece of memory of appropriate size.

The mapping of const void pointers is handled by the SWIG standard typemaps.

Note:
• The allocation of useable memory can be accomplished with the use of the Vector

command, which is described later in this chapter.
• This type of parameter is typically used to supply image data or vertex arrays. See

also the description of the Tk photo mapping later in this chapter.

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 8 of 19

Output parameter TYPE *, GLvoid *

C declaration

void glGetFloatv (GLenum pname, GLfloat *params);

void glReadPixels (GLint x, GLint y, GLsizei width,
 GLsizei height, GLenum format,
 GLenum type, GLvoid *pixels);

C example

GLfloat values[2];
glGetFloatv (GL_LINE_WIDTH_GRANULARITY, values);

GLubyte *vec = malloc (w * h * 3);
glReadPixels (0, 0, w, h, GL_RGB, GL_UNSIGNED_BYTE, vec);

Tcl example

set values [Vector GLfloat 2]
glGetFloatv GL_LINE_WIDTH_GRANULARITY $values

set vec [Vector GLubyte [expr $w * $h * 3]]
glReadPixels 0 0 $w $h GL_RGB GL_UNSIGNED_BYTE $vec

Non-constant pointers as an OpenGL function parameter must be given as a pointer to a
contiguous piece of memory of appropriate size.

The mapping of non-constant pointers is handled by the SWIG standard typemaps.

Function return TYPE, STRUCT *

C declaration
GLuint glGenLists (GLsizei range);

GLUnurbs* gluNewNurbsRenderer (void);

C example
GLuint sphereList = glGenLists(1);

GLUnurbsObj *theNurb = gluNewNurbsRenderer();
gluNurbsProperty (theNurb, GLU_SAMPLING_TOLERANCE, 25.0);

Tcl example
set sphereList [glGenLists 1]

set theNurb [gluNewNurbsRenderer]
gluNurbsProperty $theNurb GLU_SAMPLING_TOLERANCE 25.0

Scalar return values are returned as the numerical value.
Pointer to structs are returned with the standard SWIG mechanism of encoding the pointer in
an ASCII string.

The mapping of return values is handled by the SWIG standard typemaps.

Note:
• The next lines show an example of SWIG’s pointer encoding:

% set theNurb [gluNewNurbsRenderer]
% puts $theNurb
_10fa1500_p_GLUnurbs

The returned name can only be used in functions expecting a pointer to the appropriate
struct.

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 9 of 19

Exceptions from the standard rules

The GLU library as specified in header file glu.h does not provide an API, that is as
consistent as the GL core library. So one class of function parameters (TYPE *) is handled
differently with GLU functions. Arguments of type TYPE* are used both as input and output
parameters in the C version. In GLU 1.2, which is the current version, most functions use this
type as input parameter. Only two functions use this type as an output parameter.
So for GLU functions there is the exception, that TYPE* is considered an input parameter and
therefore is wrapped as a Tcl list.

Input parameter TYPE * (GLU only)

C declaration
void gluNurbsCurve (GLUnurbs *nobj, GLint nknots,
 GLfloat *knot, GLint stride,
 GLfloat *ctlarray, GLint order,
 GLenum type);

C example

GLfloat curvePt[4][2] = {{0.25, 0.5}, {0.25, 0.75},
 {0.75, 0.75}, {0.75, 0.5}};
GLfloat curveKnots[8] = {0.0, 0.0, 0.0, 0.0,
 1.0, 1.0, 1.0, 1.0};
gluNurbsCurve (theNurb, 8, curveKnots, 2,
 &curvePt[0][0], 4, GLU_MAP1_TRIM_2);

Tcl example
set curvePt {0.25 0.5 0.25 0.75 0.75 0.75 0.75 0.5}
set curveKnots {0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0}
gluNurbsCurve $theNurb 8 $curveKnots 2 $curvePt 4
 GLU_MAP1_TRIM_2

The two aforementioned functions, which provide output parameters with TYPE* are
gluProject and gluUnProject. These are handled as a special case in the SWIG
interface file glu.i. The 3 output parameters are given the keyword OUTPUT, so SWIG
handles them in a special way: SWIG builds a list consisting of the normal function return
value, and all parameters marked with that keyword. This list will be the return value of the
corresponding Tcl command.

Definition in glu.h Redefinition in SWIG interface file glu.i
extern GLint gluUnProject (

GLdouble winX, GLdouble winY,
GLdouble winZ,
const GLdouble *model,
const GLdouble *proj,
const GLint *view,
GLdouble* objX,
GLdouble* objY,
GLdouble* objZ);

GLint gluUnProject (
GLdouble winX, GLdouble winY,
GLdouble winZ,
const GLdouble *model,
const GLdouble *proj,
const GLint *view,
GLdouble* OUTPUT,
GLdouble* OUTPUT,
GLdouble* OUTPUT);

Example usage (see Redbook ([1]) example unproject.tcl for complete code):

glGetIntegerv GL_VIEWPORT $viewport
glGetDoublev GL_MODELVIEW_MATRIX $mvmatrix
glGetDoublev GL_PROJECTION_MATRIX $projmatrix
set viewList [VectorToList $viewport 4]
set mvList [VectorToList $mvmatrix 16]
set projList [VectorToList $projmatrix 16]

set realy [expr [$viewport get 3] - $y - 1]
set winList [gluUnProject $x $realy 0.0 $mvList $projList $viewList]
puts "gluUnProject return value: [lindex $winList 0]"
puts [format "World coords at z=0.0 are (%f, %f, %f)" \
 [lindex $winList 1] [lindex $winList 2] [lindex $winList 3]]

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 10 of 19

3.2 Extension of the Togl wdget

Now that we have a Tcl binding of the OpenGL functionality, we need to be able to display
the 3D contents.

Togl is an actively maintained Tk widget with support to display OpenGL graphics, but the
drawing commands have to be specified in C.
To be usable from the Tcl level, it has been extended to support 3 new configuration options
for specifying Tcl callback commands:

-createproc TclCommandName Called when a new widget is created.
-reshapeproc TclCommandName Called when the widget's size is changed.
-displayproc TclCommandname Called when the widget's content needs to be redrawn.

These configuration options behave like standard Tcl options as shown in the example
below:

% package require Togl
1.6
% togl .t
% .t configure -displayproc tclDisplayFunc
% .t configure -displayproc
-displayproc displayproc Displayproc {} tclDisplayFunc

So a minimal 3D application looks like the following “Hello, World” OpenGL program.

hello.tcl

package require tclogl
package require Togl

proc tclDisplayFunc {} {
 glClear GL_COLOR_BUFFER_BIT

 # draw white polygon (rectangle) with corners at
 # (0.25, 0.25, 0.0) and (0.75, 0.75, 0.0)
 glColor3f 1.0 1.0 1.0
 glBegin GL_POLYGON
 glVertex3f 0.25 0.25 0.0
 glVertex3f 0.75 0.25 0.0
 glVertex3f 0.75 0.75 0.0
 glVertex3f 0.25 0.75 0.0
 glEnd
 glFlush
}

proc tclCreateFunc {} {
 # select clearing color
 glClearColor 0.0 0.0 0.0 0.0

 # initialize viewing values
 glMatrixMode GL_PROJECTION
 glLoadIdentity
 glOrtho 0.0 1.0 0.0 1.0 -1.0 1.0
}

proc tclReshapeFunc { w h } {
 .fr.toglwin postredisplay
}

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 11 of 19

frame .fr
pack .fr -expand 1 -fill both
togl .fr.toglwin -width 250 -height 250 -double false \
 -createproc tclCreateFunc
.fr.toglwin configure -displayproc tclDisplayFunc \
 -reshapeproc tclReshapeFunc
grid .fr.toglwin -row 0 -column 0 -sticky news

bind . <Key-Escape> "exit"

Note that –createproc is not effective, when specified in the configure subcommand. It has
to be specified at widget creation time.

The changes in the widget code allow Togl to execute Tcl callbacks with the help of Tcl_Eval,
while still maintaining 100% of it's original functionality. Only a few lines had to be added or
changed in the Togl source code:

1. Add the 3 new configuration options to the Tk_ConfigSpec list.
2. Declaration and definition of the 3 new internal evaluation functions: tcloglCreateProc,

tcloglDisplayProc, tcloglReshapeProc.
3. Change the default callbacks to point to the new internal evaluation functions.

These 3 changes are shown with the create callback as example:

1.
{TK_CONFIG_STRING|TK_CONFIG_NULL_OK, "-createproc", "createproc",
"Createproc", NULL, Tk_Offset(struct Togl, createCallback), 0, NULL},

2.
 static int tcloglCreateProc (struct Togl *togl) {
 if (togl->createCallback) {
 if (Tcl_Eval (Togl_Interp(togl), togl->createCallback) != TCL_OK) {
 Tcl_BackgroundError (Togl_Interp(togl));
 free (togl->createCallback);
 togl->createCallback = NULL;
 return TCL_ERROR;
 }
 }
 return TCL_OK;
 }

3.
 static Togl_Callback *DefaultCreateProc = tcloglCreateProc;

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 12 of 19

3.3 Utility functions

All of the features listed in this chapter are not necessary for operation, but offer extended or
easier functionality.

3.3.1 The Vector command

As stated in chapter 3.1, some of the OpenGL functions need a pointer to a contiguous block
of allocated memory. SWIG already provides a feature to automatically generate wrapper
functions for allocating and freeing memory of any type. This feature %array_functions
also creates setter and getter functions for accessing the allocated memory.

The following definitions provided in file tclogl.i create the accessor functions for the
OpenGL base types:

// Generate array functions (new, delete, getitem, setitem) for the
// following types.

%array_functions(unsigned char,GLboolean)
%array_functions(signed char,GLbyte)
%array_functions(unsigned char,GLubyte)
%array_functions(short,GLshort)
%array_functions(unsigned short,GLushort)
%array_functions(int,GLint)
%array_functions(unsigned int,GLuint)
%array_functions(float,GLfloat)
%array_functions(double,GLdouble)

The generated wrapper code looks like this (Example shown for GLdouble):

static double *new_GLdouble(int nelements) {
 return (double *) calloc(nelements,sizeof(double));
}

static void delete_GLdouble(double *ary) {
 free(ary);
}

static double GLdouble_getitem(double *ary, int index) {
 return ary[index];
}

static void GLdouble_setitem(double *ary, int index, double value) {
 ary[index] = value;
}

The file tcloglVector.tcl contains additional Tcl commands for encapsulation of these low-
level accessor functions.

Tcl command Explanation
Vector Call the memory allocation routine new_* and create an OO like

Tcl interface. (See example below)
VectorFromList Create a new Vector from given Tcl list.
VectorFromArgs Create a new Vector from given aruments.
VectorFromString Create a new GLubyte Vector from given string.
VectorToString Copy the contents of a GLubyte Vector into a string.
VectorToList Copy the contents of a Vector into a Tcl list.

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 13 of 19

The following example shows the usage of the base Vector command.

set ind 23
set vec [Vector GLfloat 123] ; # Create a new Vector of size 123 GLfloats
set x [$vec get $ind] ; # Get element at index 23
$vec set $ind 1017.0 ; # Set element at index 23 to 1017.0
$vec delete ; # Free the allocated memory

3.3.2 Information utilities

In file tcloglInfo.tcl three utility functions are currently implemented to get information about
the OpenGL version, the installed extensions, as well as the current OpenGL state.

tcloglGetVersions

Query the OpenGL library with the keys GL_VENDOR,
GL_RENDERER, GL_VERSION, GLU_VERSION and return the
results as a list of key-value pairs.

The following code snippet shows how to call tcloglGetVersions and place the result in
a text widget.

foreach glInfo [tcloglGetVersions] {
 set msgStr "[lindex $glInfo 0]: [lindex $glInfo 1]\n"
 $textId insert end $msgStr
}

Example output of glGetVersions Example output of glGetVersions on SGI/Linux

tcloglGetExtensions
Query the OpenGL library with the keys GL_EXTENSIONS and
GLU_EXTENSIONS and return the results as a list of key-value
pairs.

The following code snippet shows how to call tcloglGetExtensions and place the result
in a text widget.

foreach glInfo [tcloglGetExtensions] {
 set msgStr "[lindex $glInfo 0]\n"
 $textId insert end $msgStr type
 foreach ext [lsort [split [string trim [lindex $glInfo 1]]]] {
 set msgStr "$ext\n"
 $textId insert end $msgStr name
 }
}

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 14 of 19

tcloglGetStates

Query all state variables of the OpenGL library and return the
results as a list of sub-lists. Each sublist contains the querying
command used, the key and the value(s).

The following code snippet shows how to call tcloglGetStates and place the result in a
text widget.

foreach glState [tcloglGetStates] {
 set msgStr "[lindex $glState 1]: [lrange $glState 2 end]\n"
 if { [string compare [lindex $glState 0] "glIsEnabled"] == 0 } {
 set tag bool
 } else {
 set tag other
 }
 $textId insert end $msgStr $tag
}

Example output of glGetExtensions Example output of glGetStates

Note:
The functions glGetString and gluGetString as well as the corresponding high-level
functions tcloglGetVersions and tcloglGetExtensions only return correct values, if
a Togl window has been opened, i.e. a rendering context has been established.

3.3.3 Tk photo mapping

In file tkphoto.i the following C functions are implemented to provide access to the Tk photo
image functionality.

Tcl command Usage
PhotoChans Return the nuber of channels of a Tk photo.
Photo2Vector Copy a Tk photo into a Vector in OpenGL raw image format. The

Vector must have been allocated with the approriate size and type.
Vector2Photo Copy from OpenGL raw image format into a Tk photo. The photo image

must have been initialized with the appropriate size and type.

These functions are best explained by looking at the following code excerpts from the simple
image viewer imgViewer.tcl:

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 15 of 19

Example 1: Read an image into a Tk photo and use it as a texture map. Note: Texture map
images must have width and height, that are multiples of 2.

proc ReadImg { imgName } {
 global gPo

 set retVal [catch {set phImg [image create photo -file $imgName]} err1]
 if { $retVal != 0 } {
 puts "Failure reading image $imgName"
 } else {
 set w [image width $phImg]
 set h [image height $phImg]
 set sqr [GetBestSquare $w $h]
 set gPo(texScaleS) [expr double ($w) / $sqr]
 set gPo(texScaleT) [expr double ($h) / $sqr]
 set sqrPhoto [image create photo -width $sqr -height $sqr]
 $sqrPhoto copy $phImg -from 0 0 $w $h -to 0 [expr $sqr -$h]
 update
 set vecImg [Vector GLubyte [expr $sqr * $sqr * 4]]
 Photo2Vector $sqrPhoto $vecImg
 image delete $phImg
 image delete $sqrPhoto
 glTexParameteri GL_TEXTURE_2D GL_TEXTURE_WRAP_S $::GL_CLAMP
 glTexParameteri GL_TEXTURE_2D GL_TEXTURE_WRAP_T $::GL_CLAMP
 glTexParameteri GL_TEXTURE_2D GL_TEXTURE_MAG_FILTER $::GL_NEAREST
 glTexParameteri GL_TEXTURE_2D GL_TEXTURE_MIN_FILTER $::GL_NEAREST
 glTexImage2D GL_TEXTURE_2D 0 4 \
 $sqr $sqr \
 0 GL_RGBA GL_UNSIGNED_BYTE $vecImg
 tclDisplayFunc
 }
}

Example 2: Read an image from the OpenGL framebuffer and save it with the Img library.

proc SaveImg { imgName } {
 global gPo

 set w $gPo(toglWidth)
 set h $gPo(toglHeight)
 set numChans 4
 set vec [Vector GLubyte [expr $w * $h * $numChans]]
 glReadPixels 0 0 $w $h GL_RGBA GL_UNSIGNED_BYTE $vec
 set ph [image create photo -width $w -height $h]
 Vector2Photo $vec $ph $w $h $numChans
 set fmt [string range [file extension $imgName] 1 end]
 $ph write $imgName -format $fmt
}

The actual size of the Togl window (gPo(toglWidth), gPo(toglHeight)), which is
needed in command SaveImg, can be saved in a global variable when the reshape callback
is executed.

proc tclReshapeFunc { w h } {
 global gPo

 set gPo(toglWidth) $w
 set gPo(toglHeight) $h
 ...
}

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 16 of 19

3.3.4 Additional tclogl utilities

The utilities in this chapter have been added for testing and demonstration purposes.

GLUT shapes library

The shape objects implemented in the GLUT library are available under the same names for
running the test programs of the OpenGL redbook ([1]).

Solid shapes Wire shapes
glutSolidCube glutWireCube
glutSolidCone glutWireCone
glutSolidSphere glutWireSphere
glutSolidTorus glutWireTorus
glutSolidTetrahedron glutWireTetrahedron
glutSolidOctahedron glutWireOctahedron
glutSolidDodecahedron glutWireDodecahedron
glutSolidIcosahedron glutWireIcosahedron
glutSolidTeapot glutWireTeapot

Some GLUT shapes Quadrics examples

The shapes library consists of the C files (teapot.c for the teapot, shapes.c for all other
shapes and the common header file shapes.h) and the Tcl file tcloglShapes.tcl.

The shape library also acts as a demonstration, how to extend the tclogl package with C
code.
The steps necessary are:

1. Compile your C source files (shapes.c, teapot.c)
2. Put the name of the header file (shapes.h) into SWIG interface file util.i.
3. Call SWIG to create a new wrapper file.
4. Relink your dynamic library with the new object files (shapes.o, teapot.o).

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 17 of 19

Alias/Wavefront modelfile reader

A simple viewer for 3D models has been implemented in objViewer.tcl
It can read model files in Alias/Wavefront format. The code to read and draw the models is
taken from Nate Robin's OpenGL tutorial ([4]). The corresponding files are glm.c and glm.h.

Smooth shaded model file Line drawing of model file

4 Caveats / Common pitfalls

Some OpenGL functions expect an integer or floating point value, which is often given in C
code examples with an enumeration, as shown in the next example:

extern void glTexParameteri (GLenum target, GLenum pname, GLint param);

It is called in C typically as follows:
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

As the 3rd parameter is not of type GLenum, you have to specify the numerical value here:
glTexParameteri GL_TEXTURE_2D GL_TEXTURE_WRAP_S $::GL_REPEAT
glTexParameteri GL_TEXTURE_2D GL_TEXTURE_MAG_FILTER $::GL_NEAREST

If called with the enumeration name:
glTexParameteri GL_TEXTURE_2D GL_TEXTURE_WRAP_S GL_REPEAT
you will get an error message like this: expected integer but got "GL_REPEAT"

To correctly wrap the OpenGL libraries, a version of SWIG greater or equal to 1.3.19 is
needed.

For performance reasons use OpenGL display list, where possible.

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 18 of 19

5 Open issues

• GLU callbacks are currently not supported. This implies, that tesselation does not
work, because this functionality relies heavily on the usage of C callback functions.

• There is currently no possibility to specify a color map for OpenGL indexed mode. As
color maps depend on the underlying windowing system, this feature should be
handled by the Togl widget.

• Picking with depth values does not work correctly, as depth is returned as an
unsigned int, mapping the internal floating-point depth values [0.0 .. 1.0] to the range
[0 .. 232 –1]. As Tcl only supports signed integers, some depth values are incorrectly
transferred into the Tcl commands.

• The handling of Tcl errors inside of Togl callbacks could be improved.
• To evaluate the Tcl callbacks, Tcl_Eval is currently used, which does not compile the

script into bytecode. Use the object-interface instead.

6 Results

To test the correctness and completeness of the wrapped OpenGL library, the examples of
the Redbook ([1]), which are available as C code ([2]), were ported into equivalent Tcl code.

The Redbook contains 56 examples, showing many aspects of OpenGL features.
52 of them have been successfully converted into equivalent Tcl scripts and compared on
different computers against the C version. All of them gave identical results, except depth-
picking in some cases (see above).

Two of the missing four examples deal with tesselation, which is currently not supported, as
stated in the previous chapter. The other two test programs not yet ported deal with color
index mode, which is not yet implemented, too.
Tesselation and color index mode both are rarely used features, at least in my applications.

Redbook example fog.tcl Redbook example texgen.tcl

5th European Tcl/Tk User Meeting May 2005

Doing 3D with Tcl Paul Obermeier Page 19 of 19

To demonstrate the easy transition of C to Tcl code, a more complex program, the "Atlantis
demo" ([3]) has been ported. It behaves like it's C pendant, but performs a lot slower, as it
has been not been optimized for running as a Tcl script.

Finally a simple image viewer has been implemented that allows realtime scaling of the
image. The images can be read from files in all formats supported by the Img extension. The
stretched image may also be written out to an image file.

The Togl and tclogl packages have been generated and tested on the following platfoms:

Operating system Compiler version SWIG version
Windows XP Visual C++ 6.0 1.3.19
SuSE Linux 9.0 gcc 3.3.1 1.3.19
IRIX 6.5 MIPSpro cc 7.30 1.3.24

The source code for the tclogl package, i.e. the modified Togl code and the SWIG interface
files for the OpenGL wrapper, as well as the test and demo programs can be downloaded
from my home page ([7]). A binary version of the actual SWIG version 1.3.24 for IRIX is
available there, too.

7 References

[1] Woo, Neider, Davis: OpenGL Programming Guide, Addison-Wesley, “The Redbook”

[2] Redbook C examples: http://www.opengl.org/resources/code/basics/redbook

[3] Atlantis demo: http://www.opengl.org/resources/code/glut/glut_examples/demos/demos.html

[4] Nate Robins OpenGL tutorial: http://www.xmission.com/~nate/tutors.html

[5] OpenGL Wiki page: http://wiki.tcl.tk/2237

[6] SWIG (Simplified Wrapper and Interface Generator): http://www.swig.org

[7] Paul Obermeier's Portable Software: http://www.poSoft.de

5. European Tcl/Tk User Meeting, May 2005, Bergisch Gladbach, Germany

Tcl/Tk Potpourri
Experiences by using Tcl/Tk in

data and document management

Jörg Schmitz1
arvato logistics services

D15E2
Fr.-Menzefricke-Str. 16-18

33775 Versmold
Germany

Abstract
In our department Tcl is used as it’s natural character: a Tool
command language.

To show the wide range of usage I’ll give four examples: importing
data from an XML document to a relational database schema,
developing a parser for context free languages, e.g. compile EBNF
into syntax diagrams, similarity search using the n-Gramm method
to match different translation memories and a web front-end based
on an idea of server pages but using CGI.

XML RDB Mapping
To import data from an XML document into a database you have to parse the XML file.
Therefore you can take a DOM or a SAX implementation of an XML parser. If you don’t
know how big your XML document can get it will be impossible to use DOM because not
enough memory to store the DOM tree of the complete document. Using SAX parser as
an alternative will take you to another problem: no random access to the XML data (e.g.
XPath expressions), only sequentially fired events for tags and character data. Therefore
you can rebuild the interlaced data structure of the XML document by your own data
structure or you can directly send attribute values and character data to a target system
but you have to write procedures to handle SAX events and data.
Because of RDB as target system I decided to store minimal data structures and to write
data into database when possible. Possible means a complete or incomplete set of data
to store in a database table. Incomplete data sets needs to be filled up with type specific
data.

<customer>
 <person>
 <name>Schmitz</name> Schmitz
 <email>schmitz@bla.org</email> schmitz@bla.org
 </person>
 <company>
 <name>arvato</name> arvato
 </company>
</customer>

XML cut out Data

Table: customer insert into customer values(
cid integer primary key auto increment null,
person_name varchar(42) not null ‘Schmitz’,
person_email varchar(42) ‘jschmitz@gmx.net’,
company_name varchar(42) not null ‘DUMMY’);

Table: customer SQL: incomplete set (DUMMY)

1 E-Mail address: joerg.schmitz@bertelsmann.de | jschmitz@gmx.net

 - 1 -

mailto:schmitz@bla.org
mailto:joerg.Schmitz@bertelsmann.de
mailto:jschmitz@gmx.net

5. European Tcl/Tk User Meeting, May 2005, Bergisch Gladbach, Germany

1 update customer
Schmitz set company_name = ‘arvato’
jschmitz@gmx.net where cid = 1
DUMMY

Data set after INSERT SQL: update set (arvato)

1
Schmitz
jschmitz@gmx.net
arvato

Data set after UPDATE

This approach forces a sequence of insert and update SQL statements to store data into
database but it’s simple and fast.
Because it’s simple you can think in a standardized way of writing event handler and data
handler to import XML data into a RDB schema. First step is to create an XML parser and
to configure it:

01 set parser [eval ::xml::parser -validate 0]
02 $parser configure -elementstartcommand element_begin
03 $parser configure -characterdatacommand cdata
04 $parser configure -elementendcommand element_end
05 $parser parse $data

Then you can implement the event handler:

01 proc element_begin {name attlist} {
02 global PARSER
03 lappend PARSER(context) $name
04 foreach {item value} $attlist {
05 if {[catch {attribute “[join $PARSER(context) “.”].$item” $value}

err]} {
06 error “attribute\ncontext: $PARSER(context)\nerror: $err”
07 }
08 }
09 if {[catch {begin_${name} [join $PARSER(context) “.”]} err]} {
10 error “begin_$name\ncontext: $PARSER(context)\nerror: $err”
11 }
12 }

01 proc cdata {data} {
02 global PARSER
03 set name [lindex $PARSER(context) end]
04 if {[catch {cdata_${name} “[join $PARSER(context) “.”].data” $data}

err]} {
05 error “cdata_$name\ncontext: $PARSER(context)\nerror: $err”
06 }
07 }

01 proc element_end {name} {
02 global PARSER
03 set PARSER(context) [lrange $PARSER(context) 0 end-1]
04 if {[catch {end_${name} [join $PARSER(context) “.”]} err]} {
05 error “end_$name\ncontext: $PARSER(context)\nerror: $err”
06 }
07 }

The event handler calls a data handler by XML element name (${name}):

• element_begin calls begin_${name}
• cdata calls cdata_${name}
• element_end calls end_${name}

 - 2 -

mailto:jschmitz@gmx.net
mailto:jschmitz@gmx.net

5. European Tcl/Tk User Meeting, May 2005, Bergisch Gladbach, Germany

This data handler must not be written by hand. They can be generated during runtime.
Therefore a very small mapping language was developed to describe what to do with
data out of an XML document.
This mapping language is defined as:

INIT
Initialises a data structure to store data from the XML document. INIT creates a
procedure
which is called by the event handler for a start tag to set the attribute values. INIT must
be used in the START command of the XML document root element.

ERASE
Delete the data structure created by INIT. ERASE must be used in the STOP command of
the XML document root element.

START name script
START must be defined for each element of an XML document. It’s the container for the
data handler of an XML start element. name is the element’s name. script is a set of
commands that should be executed by calling the data handler.

STOP name script
STOP must be defined for each element of an XML document. It’s the container for the
data handler of an XML end element. name is the element’s name. script is a set of
commands that should be executed by calling the data handler.

CONTEXT context script
If an XML element is used in different contexts you can define a set of commands
(script) for each context. context is a complete path to the element in the interlaced
structure. It’s described as all element names to this context starting with the root
element and joined by a dot, e.g.: PODAccounting.Article.AcoountingArea. CONTEXT is
used in the START or STOP command of the XML element.

SET name value
Use SET to assign XML values to the target data structure. If target is a database use the
complete path to a database field: (<schema>.)?<table>.<column> as a value for name.
value is a complete path to the element in the interlaced structure. It’s build up by all
element names to this context starting with the root element and joined by a dot, e.g.:
PODAccounting.Article.Activity. .data must be added to this path to assign the
character data. .<attribute_name> must be added to assign data of an defined
attribute.

VAR name value
With VAR you can define own variables to store temporary values. name is the name of
the variable. value is the assigned value to this variable. It’s typically used for result sets
of a DO command.

OPTIONAL name script
Elements can be defined as ‘optional’ in the document type definition (DTD) of an XML
document. If you have to run commands for a non existing (optional) element you can
use OPTIONAL in the most recent START or STOP command to the optional element.

GET name
To get a value out of the target data structure use the command GET. If target is a
database use the complete path to a database field: (<schema>.)?<table>.<column> as
a value for name, e.g. ArticleMaster.MasterNumber. Usage of GET results in other
commands:
SET Activity.ArticleID [GET Article.ArticleID].

 - 3 -

5. European Tcl/Tk User Meeting, May 2005, Bergisch Gladbach, Germany

UNSET name
Use UNSET command to remove values from the target data structure. If name is not a
complete path to character data or attributes all structures below last element in name
are deleted. UNSET is typically used in an elements STOP command.

DO ?tupel? script
DO typically executes SQL queries given by script. If tupel is not set and script is a
select statement, DO returns a list of lists with name value pairs, e.g.
{ {ARTICLENUMBER 10.2034.64.00 ARTICLEARCHIVE VWoA} {...} ...}.
If tupel contains a name of a variable in the result set, only the first value assigned to
this variable name (first row in result set) is returned:
[DO ArticleNumber {...}] 10.2034.64.00

ID sequence
ID will return the current value of a given sequence of the used database schema.

FORALL items resultset script
FORALL is an iterator to execute commands by using values of DO result sets. The DO
resultset must be assignet to a VAR variable. items defines a list of variables which
should be used during the iteration. Values can be used by GET command. name of GET is
written as <resultset>.<item>, e.g.:
VAR customer [DO {select name, email from customer}]
FORALL {name email} customer { VAR x “[GET customer.name], [GET
customer.email]”}

Developing an accounting application using XML RDB mapping

An accounting client sends XML data streams with settlement information to an
accounting server. The accounting server parses the XML data and stores settlement
information in a database system. Client, server and database are running on different
computers in the local are network. Communication is done by TCP/IP and a small
application specific protocol.

DB Layer

DB Connector

Ac
co

un
tin

g
D

at
ab

as
e

XML
RDB
maps

Accounting
Server

Accounting
Client

Lo
gg

in
g

XML data

XML Parser

XML Layer

XML RDB Mapper

x.log

 - 4 -

5. European Tcl/Tk User Meeting, May 2005, Bergisch Gladbach, Germany

DTD, XML and XML RDB mapping examples

PODAccounting.xml

<!ELEMENT PODAccounting (Article+)>
<!ELEMENT Article (AccountingArea, SalesOrganization, CopyFactor, Description?, Activity?)>
<!ATTLIST Article
 number CDATA #IMPLIED
 archive CDATA #IMPLIED
>
<!ELEMENT AccountingArea (#PCDATA)>
<!ELEMENT SalesOrganization (#PCDATA)>
<!ELEMENT CopyFactor (#PCDATA)>
<!ELEMENT Description (#PCDATA)>
<!ELEMENT Activity (Item+)>
<!ELEMENT Item EMPTY>
<!ATTLIST Item
 type CDATA #REQUIRED
 quantity CDATA #REQUIRED
>

PODAccounting.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE PODAccounting SYSTEM "./dtd/PODAccounting.dtd">
<PODAccounting>
 <Article number="001.1245.44.20" archive="SAP">
 <AccountingArea>VW</AccountingArea>
 <SalesOrganization>VWoA</SalesOrganization>
 <CopyFactor>2</CopyFactor>
 <Description>Reparaturanleitung Golf</Description>
 <Activity>
 <Item type="BWPrintSingle" quantity="120"/>
 <Item type="CPrintSingle" quantity="2"/>
 </Activity>
 </Article>
 <Article number="030.2040.13.00" archive="VW">
 <AccountingArea>VW</AccountingArea>
 <SalesOrganization>Audi</SalesOrganization>
 <CopyFactor>10</CopyFactor>
 </Article>
</PODAccounting>

 - 5 -

5. European Tcl/Tk User Meeting, May 2005, Bergisch Gladbach, Germany

PODAccounting2SQL.tcl

START PODAccounting {INIT}; STOP PODAccounting {ERASE}
START Article {
 SET Article.ArticleNumber PODAccounting.Article.number
 SET Article.ArticleArchive PODAccounting.Article.archive
}
STOP Article {
 OPTIONAL PODAccounting.Article.Activity {
 SET Activity.ArticleID [ID ArticleSeq]
 VAR MasterProduct [DO {
 SELECT t1.productid, t1.masterquantity
 FROM masterproduct t1, articlemaster t2
 WHERE t1.masterid = t2.masterid
 AND t2.masternumber = [GET Article.ArticleNumber]
 AND t2.masterarchive = [GET Article.ArticleArchive]
 }]
 FORALL {ProductID MasterQuantity} MasterProduct {
 DO {INSERT INTO Activity (ArticleID, ProductID, ActivityQuantity)
 VALUES ([GET Activity.ArticleID],[GET MasterProduct.ProductID],
 [GET MasterProduct.MasterQuantity])
 }
 }
 }
 OPTIONAL PODAccounting.Article.Description.data { SET Article.ArticleDesc "null"}
 DO {UPDATE article SET articledesc = [GET Article.ArticleDesc]
 WHERE articleid = [GET Activity.ArticleID]
 }
 UNSET PODAccounting.Article
}
START AccountingArea {}
STOP AccountingArea {
 SET Article.ArticleDomain PODAccounting.Article.AccountingArea.data
}
START SalesOrganization {}
STOP SalesOrganization {
 SET Article.ArticleSalesOrg PODAccounting.Article.SalesOrganization.data
}
START CopyFactor {}
STOP CopyFactor {
 SET Article.ArticleCopyFactor PODAccounting.Article.CopyFactor.data
 OPTIONAL PODAccounting.Article.number {SET Article.ArticleNumber "null"}
 OPTIONAL PODAccounting.Article.archive {SET Article.ArticleArchive "null"}
 DO { INSERT INTO Article (
 ArticleDomain, ArticleSalesOrg, ArticleNumber,
 ArticleArchive, ArticleCopyFactor, ArticleDesc)
 VALUES ([GET Article.ArticleDomain], [GET Article.ArticleSalesOrg],
 [GET Article.ArticleNumber], [GET Article.ArticleArchive],
 [GET Article.ArticleCopyFactor], null)
 }
}
START Description {}
STOP Description {SET Article.ArticleDesc PODAccounting.Article.Description.data}
START Activity {}; STOP Activity {}
START Item {
 SET Product.ProductName PODAccounting.Article.Activity.Item.type
 SET Activity.ActivityQuantity PODAccounting.Article.Activity.Item.quantity
 SET Activity.ArticleID [ID ArticleSeq]
 SET Product.ProductID [DO ProductID {
 SELECT ProductID FROM Product WHERE ProductName = [GET Product.ProductName]
 }]
}
STOP Item {
 DO {INSERT INTO Activity (ArticleID, ProductID, ActivityQuantity)
 VALUES ([GET Activity.ArticleID], [GET Product.ProductID],
 [GET Activity.ActivityQuantity])
 }
 UNSET PODAccounting.Article.Activity
}

 - 6 -

5. European Tcl/Tk User Meeting, May 2005, Bergisch Gladbach, Germany

Parser for context free languages
Sometimes regular expressions can’t solve your problem to analyse an given expression
because it’s not a regular one but a context free expression. Recursively defined
expressions are typically represented by context free languages, e.g.:

 A = “a” A “c” | “b”.

Following an approach of Wirth2 it is really simple to write a parser for context free
expressions.

There are two steps to find out (parse) if an expression is one of the defined language:

1. Lexical analysis
2. Syntactical analysis

Lexical analysis is done by a scanner. The scanner splits the given expression into
symbols. The parser uses an interator to get a symbol from the scanner.

To create your own context free language, e.g. a business rule language to describe
business relevant parameters in an application, you can use a well known notation, the
Extended Backus Naur Form (EBNF).

Definition of EBNF (in EBNF):

syntax = {statement}.
statement = identifier "="
 expression ".".
expression = term {"|" term}.
term = factor {factor}.
factor = identifier | string |
 ("(" expression ")")|
 ("[" expression "]")|
 ("{" expression "}").
identifier = letter {letter | digit}.
string = {character}.

You have do decide between nonterminal symbols (NTS) and terminal symbols (TS). A
NTS is a symbol that can be substituted by another symbol. A TS can not be substituted.
A TS is written in quotation marks, e.g.: “=”.

The basic constructs of EBNF are:

Construct Semantics Meta Code
“x” Terminal symbol “x” IF sym=”x” THEN next ELSE error END
(exp) Expression Pr(exp)
[exp] Optional expression IF sym IN first(exp) THEN Pr(exp) END
{exp} Repeated expression WHILE sym IN first(exp) DO PR(exp) END
fac0fac1…facn Series of factors Pr(fac0);Pr(fac1);… PR(facn)
term0|term1|…|termm Alternation of terms CASE sym OF

 first(term0): Pr(term0)
 | first(term1): Pr(term1)
…
..| first(termm): Pr(termm)
END

The meta code can know be used to test if an given expression is one of the defined
language. Remembering the example above a procedure to check the syntax of A is
written as:

2 Wirth, Niklaus: Grundlagen und Techniken des Compilerbaus, Addison-Wesley, 1996

 - 7 -

5. European Tcl/Tk User Meeting, May 2005, Bergisch Gladbach, Germany

Meta Code Tcl Code
PROCEDURE A;
BEGIN
 IF sym = “a” THEN
 next; A;
 IF sym = “c” THEN
 next
 ELSE
 Error
 END
 ELSIF sym = “b” THEN
 next
 ELSE
 error
 END
END A

 proc A {} {
 global sym
 if {$sym == “a”} {
 getSym; A
 if {$sym == “c”} {
 getSym
 } else {
 error “sym $sym must be ‘c’”
 }
 } elseif {$sym == “b”} {
 getSym
 } else {
 error “sym $sym must be ‘b’”
 }
}

With procedure A you can check that aaabccc is syntactically correct.

Creating syntax diagrams out of EBNF descriptions
In this more complex example a scanner and parser for EBNF is combined with a stack to
store some output created during scanning and parsing an expression. This generated
output is Tcl code that is interpreted in a separated step as drawing instructions for a
syntax diagram. This combination of a scanner, parser and code generator is called a
compiler. It does not create machine executable code to run a program but drawing
instructions to create a syntax diagram.

A = ("a" A "c")|"b".

syntax = {statement}.
statement = identifier "="
 expression ".".
expression = term {"|" term}.
term = factor {factor}.
factor = identifier | string |
 ("(" expression ")")|
 ("[" expression "]")|
 ("{" expression "}").
identifier = letter {letter |
digit}.
string = {character}.

 - 8 -

5. European Tcl/Tk User Meeting, May 2005, Bergisch Gladbach, Germany

Similarity search
To describe the similarity of two strings you can use well known similarity functions:

• Levenshtein distance (LD)
• Longest Common Subsequences (LCS)
• N-Gram
• …

The N-Gram method with digram sets (N = 2) is exemplary used for similarity functions.

Similarity values were computed using the following string similarity scheme:

SIM(N1, N2) = | N1 ∩ N2| / | N1 ∪ N2|,

where N1 and N2 are digram sets of two strings. | N1 ∩ N2| denotes the number of
intersecting (similar) digrams, and | N1 ∪ N2| the number of unique digrams in the union
of N1 and N2.

For example, the degree of similarity for the strings rwanda and ruanda is calculated as
follows:

SIM({rw,wa,an,nd,da},{ru,ua,an,nd,da}) = |{an,nd,da}| / |{rw,wa,an,nd,da,ru,ua}| =
3/7 (0.428).

For the string compared to itself the similarity value is 1.0.

Example of use: Merge of translation memories
Our department for translation asked to create a new translation memory (TM) out of
two given translation memories. This two TMs are created by a computer aided
translation tool during translation of SGML documents from German (DE_DE) to English
(EN_GB) and during translation of XML documents from English (EN_US) to simplified
Chinese (ZH_TW). The content of both TMs describes repair manuals of different car
types and brands of an international multi brand car manufacturer. The DE|EN file is
around 15400 entries, the EN|ZH file is around 700 entries. It’s as test case to find out
how many entries can be identified by the English phrases in both TMs.

Because it’s time wasting to do 700 x 15400 comparisons (10500000: if one test is about
1 millisecond it’s around 180 minutes) between this two TMs the following normalisation
and grouping steps are done:

• Normalisation
o Lower characters and deleting all white space in the English terms
o Deleting SGML, XML and RTF sequences as part of the English terms
o Deleting some special characters: , . _ - + * # ‘ “ ! $ % & () { }[] | ? in

the English terms
• Grouping

o A group of strings is build up by the same quotient of a string length
(integer) division by 4, that means one group of strings contains strings
with 4n…4n+3 characters

I got 50 groups with an average of 15 terms for the EN|ZH TM and 300 terms for the
DE|EN TM. This is around 225000 comparisons (50 x 15 x 300) between that two
translation memories. This process needs around 6 minutes to read the two files,
normalise and group the English terms, make the comparison and generate an XML
output file. It theoretically needs 4 minutes (assumption: 1 millisecond per comparison).

The merged TM (DE|ZH) can be loaded by an special editor to check and correct terms
that are not identical. The similarity is given as an distance between 0.0 and 0.1. This
editor can store the translation memory as a TMX (translation memory exchange format)
file to use this TM with different CAT tools.

 - 9 -

5. European Tcl/Tk User Meeting, May 2005, Bergisch Gladbach, Germany

Tcl CGI Pages
It’s a hard job to generate HTML output in a CGI application if you use Tcl’s puts
statement:

puts stdout "<html>"
puts stdout "<head><title>hello world example</title></head>"
puts stdout "<body>[regive \"Hello, World!\"]<body>"
puts stdout "</html>"

It will be nice to write a HTML page (hw.tcp) with embedded Tcl code and run an
interpreter to get the output:

<html>
<head><title>hello world example</title></head>
<body>[regive "Hello, World!"]<body>
</html>

And this is trivial with Tcl:

set rid [open hw.html r]; set html [read $rid]; close $rid
puts stdout [subst $html]

With the following result (regive returns the given string):

<html>
<head><title>hello world example</title></head>
<body>Hello, World!<body>
</html>

 - 10 -

5. European Tcl/Tk User Meeting, May 2005, Bergisch Gladbach, Germany

It’s a little bit more complex to use if-then-else control structures in a Tcl CGI Page
(TCP) to control witch parts of the HTML code should be in the output but benefit is much
higher than learning this syntax.

<table>
 [if {![is_data "session,id"]} {
 subst {
 <tr>
 <td>

 </td>
 </tr>
 }
 } else {
 subst {
 <tr>
 <td>

 [::msgcat::mc "Home Page"]

 </td>
 </tr>
 [tsp_menu "administration" "Administration"]
 }
 }]
</table>

Taking this examples as a starting point I will present my “last web application”.

Translator Pool for Pangea: TP²
TP² is a database about translators and translation agencies. This application is used by
our department of translation to find the right translator for a new translation project.
After logon to the web based application you can use several functions depending on
your user role and rights:

• Administrator
o Adding, changing and deleting base information in the database (language

/ country combinations based on ISO lists of languages an countries, topics
to specify a translation project, title and job title information etc)

o Managing roles and rights to use the application
o Adding, changing and deleting application user

• Project Manager
o Adding, changing and deleting translators and translation agencies

including their service offering (language pairs, prices, etc)
o Search translation resources
o Adding projects and rate projects

• Member
o Search translation resources

System structure
The system structure is the same as other CGI applications:

User Database

Web-Server

CGI-Program

 - 11 -

5. European Tcl/Tk User Meeting, May 2005, Bergisch Gladbach, Germany

System architecture
The system architecture is more complex than a standard CGI program:

Session
handler

Validator TCP Interpreter

Controller

Logger

Database
Wrapper

Database
Connectors

Message Catalog
request

response

Session TCP Action Business
Proc.

Messages

Database

Logfile

A request contains the name of the main application application.tcl and as a hidden
value the name of the requested action, e.g.: show=add_translator. It also contains all
form field variables and values from the requesting website. While a session is running
the assigned cookie contains the session id. The session handler checks if there is a
session file with the same id and sources this file. The controller sources the called action
action_add_translator.tcl and if exists the corresponding business procedures
business_add_translator.tcl. The action runs the validator and checks the form
values. If there is an error, action sources an error Tcl CGI Page, if ok, action runs the
business procedures and then sources the response TCP. The business procedures may
query the model (database) and select, insert, update or delete data. The response site
is evaluated by the TCP interpreter and send to the requesting client. Embedded Tcl code
in a TCP can directly query the model. This has to be changed in the future. The session
handler writes the session relevant data to the session file.

Code example: action_reference_project.tcl

proc action_reference_project {} {
 puts stdout "Content-type: text/html\n\n"
 if {![running_session]} {
 puts stdout [include "index"]
 } else {
 set usecase [get_session "running_case"]
 set form_data [list [list "$usecase,languagecountry_source" {^([0-9]+_[0-9]+)?$}]\
 [list "$usecase,languagecountry_target" {^([0-9]+_[0-9]+)?$}]\
 [list "$usecase,capacity" {^.*$}]\
 [list "$usecase,discount" {^.*$}]\
 [list "$usecase,match_0_full" {^[0-9]?$}]\
 [list "$usecase,match_0_part" {^([0-9][0-9])?$}]\
 [list "$usecase,match_100_full" {^[0-9]?$}]\

 - 12 -

5. European Tcl/Tk User Meeting, May 2005, Bergisch Gladbach, Germany

 [list "$usecase,match_100_part" {^([0-9][0-9])?$}]\
 [list "$usecase,match_fuzzy_full" {^[0-9]?$}]\
 [list "$usecase,match_fuzzy_part" {^([0-9][0-9])?$}]]
 if {![valid_form "lappend" $form_data]} {
 puts stdout [include "reference_project"]
 } else {
 if {[is_this performance_next]} {
 puts stdout [include "reference_performance"]
 } elseif {[is_this performance_submit]} {
 puts stdout [include "reference_project"]
 } else {
 puts stdout [include "index"]
 }
 }
 }
 return
}

Screen shoots

 - 13 -

5. European Tcl/Tk User Meeting, May 2005, Bergisch Gladbach, Germany

 - 14 -

zogl: Tcl/OpenGL integration Alexios Zavras <zvr+tcl@zvr.gr>

5th European Tcl/Tk User Meeting 27–28 May 2005 1

zogl
Tcl/OpenGL integration

Alexios Zavras
zvr+tcl@zvr.gr

zogl: Tcl/OpenGL integration Alexios Zavras <zvr+tcl@zvr.gr>

5th European Tcl/Tk User Meeting 27–28 May 2005 2

Motivation

3D

2D Tk canvas limitations

number of objects

tags

support

zogl: Tcl/OpenGL integration Alexios Zavras <zvr+tcl@zvr.gr>

5th European Tcl/Tk User Meeting 27–28 May 2005 3

Usage Case Study

Athena Design Systems

CAD tools

view chip on screen

100K – 10M rectangles

zogl: Tcl/OpenGL integration Alexios Zavras <zvr+tcl@zvr.gr>

5th European Tcl/Tk User Meeting 27–28 May 2005 4

zogl: Tcl/OpenGL integration Alexios Zavras <zvr+tcl@zvr.gr>

5th European Tcl/Tk User Meeting 27–28 May 2005 5

Status

currently fully functional

Single command (zogl) for widget

::GL namespace

> 240 GL calls implemented

hand-written (not SWIGged)

only for X Window System

zogl: Tcl/OpenGL integration Alexios Zavras <zvr+tcl@zvr.gr>

5th European Tcl/Tk User Meeting 27–28 May 2005 6

Code Example

zogl .gl -width 200 -height 200

glShadeModel $::GL::FLAT
glClearColor 0 0 0 0
glBegin $::GL::TRIANGLES
 glVertex3f 0.1 0.9 0.0
 glVertex3f 0.1 0.1 0.0
 glVertex3f 0.7 0.5 0.0
glEnd

zogl: Tcl/OpenGL integration Alexios Zavras <zvr+tcl@zvr.gr>

5th European Tcl/Tk User Meeting 27–28 May 2005 7

Special Features

Tk image support

img2texture

tight X integration

glX calls

X window IDs

context sharing

zogl: Tcl/OpenGL integration Alexios Zavras <zvr+tcl@zvr.gr>

5th European Tcl/Tk User Meeting 27–28 May 2005 8

Tasks for Release

licensing decision

documentation

manual page

tutorial

autoconfig tools

TEA compliance

zogl: Tcl/OpenGL integration Alexios Zavras <zvr+tcl@zvr.gr>

5th European Tcl/Tk User Meeting 27–28 May 2005 9

Future Work

textures

pbuffers

extensions

extra functions

zogl: Tcl/OpenGL integration Alexios Zavras <zvr+tcl@zvr.gr>

5th European Tcl/Tk User Meeting 27–28 May 2005 10

Word of Caution

OpenGL not one, but many

implementation details

nVidia ≠ Mesa

zogl: Tcl/OpenGL integration Alexios Zavras <zvr+tcl@zvr.gr>

5th European Tcl/Tk User Meeting 27–28 May 2005 11

Demo time!

zogl: Tcl/OpenGL integration Alexios Zavras <zvr+tcl@zvr.gr>

5th European Tcl/Tk User Meeting 27–28 May 2005 12

Tank yo!

Tour through T−IDE V2.0

T−IDE V2.0 is brand−new, includes themes for better look−and−feel on every platform (incl. WIN−XX). It includes several
enhancements and speedups. After you have used it for a project you will know about the benefits you get through T−IDE and you

will never use anything else (and it is not limited to Tcl only!).

After the "welcome−picture" has disappeared the T−IDE−starter pops up.

This is the place where you can create new projects, open existing ones (the last 10 can be easily accessed via
the History−menu), close open ones, rename and delete projects. In the Tool−menu you will find an entry
called "Workspaces". If you are programming in a team, this is the place where you define your workspaces
(every programmer gets his own private workspace to work in and put then the result into the shared
workspace to make it accessible to all others). But in our tour we will omit this step.

TIDE_Tour

1

First we have to create a project

By pressing the "New Project"−Button we get now a window called "New Project" to set all necessary
values.

We will use a path with already existing files with the shown settings:

Lets press "Create".

The parser parses through all source−files and stores the result in a database.

Then the Project−editor pops up.

Here showing some different styles:

Theme "Clam" Theme "Next" Theme "Default"

TIDE_Tour

2

In case CVS is your Revision Control System the Project−Editor would look like this (with additional buttons
to control CVS):

TIDE_Tour

3

<>The Project−editor lets you modify the structure of the project. You can not only add or remove files to
every project, you can also add or remove subprojects (or complete trees), where the physical location of the
single project is unimportant.

You can view the files of a specific project by clicking on the appropriate folder. The folder−icon itself is
replaced by a sheet−icon. Files in bold are readable and writeable; files in normal script are read−only; this in
italic are symbolic links. Symbolic links are used if the current project is opened in a private workspace
(team−developement). Enabling the switch "Lockers" shows the locker and the locked revision. Enabling the
switch "History" shows the revision−tree for the selected file (only if a revision−tool has been specified).

Now we want to edit a file. A doubleclick on a source−file opens the editor :

TIDE_Tour

4

On the right hand side of the editor you see a list of all procs defined in this file. Clicking on it relocates the
editor to the location of the proc. Proc−names can be shown in colorized in a different font, comments also
(can be modified in the Preferences).

The editor offers you all possibilities of navigation :

retrieving a string from the current file, current project or all projects (see Retriever)•
looking up for a specific symbol (proc−name, global or variable) (see Symbol−Browser)•
call−tree−hierarchy (which procs are calling the actual proc, or where is global XX set or read,..) (see
Referencer)

•

widget−hierarchy−browser (see Hierarchy−Browser)•

From the editor you can debug your current file (if its a part of an other one you can specify it). TUBA has
been integrated as standard−debugger (thanks to John Stump). You can easily jump between editing and
debugging (only for Tcl8.0.x!).

To test your application you have just to press the "RUN"−button....

If your application has been tested well you can compile it to byte−code by selecting "Make − make target".

TIDE_Tour

5

Other features of the editor : easy access to a VCS−tool (currently RCS and CVS, other will follow soon), to a
GUI−builder, a user−menu to add own tools, mostly used commands as keyboard−shortcuts, use more than
one editor at a time.

Lets continue with the Diff/Merge−tool

The Diff/Merge−tool is available as 2− and 3−way diff (e.g. to merge 2 branches into the main−branch).

The Retriever :

TIDE_Tour

6

A double−click on a listed item opens the source−code−editor just at the position of the retrieved item.

The Symbol−Browser :

TIDE_Tour

7

Shows procs, variables and globals used in the selected projects. The contents of the list may be filtered. This
is a good way to find double−use of a symbol. Like above in the Retriever the location of the selected symbol
can be edited by double−clicking on the symbol.

The Referencer :

TIDE_Tour

8

The above screenshot shows a nested "ref−to" tree. To limit the displayed information Tcl/Tk−commands and
globals/variables can be switched off.

You cannot only view the proc call−tree, but also find the procedures where global variables are referenced
for write or read−access.

e.g. "global TREE referred by" gives you all procs reading or writing the global. Or : "proc Tree:build referred
by" gives you all procs calling Tree:build.

By double−clicking on a node the source−code−editor opens at the position where the symbol is used. This is
a very convenient way to understand the process−flow of an application.

Even this view can be limited by selecting or deselecting projects.

The Hierarchy−Browser :

Shows the used widgets depending on the selected projects. Will be available with our GUI−Builder.

TIDE_Tour

9

The Configuration−Manager :

Helps to manage configurations within your preferred VCS−Tool.

Note: this tool is not available in TIDE light!

The Documentation−Editor :

TIDE_Tour

10

Produces HTML−documents of your source−files. The documentation can be done for the whole project or
file−by−file. Colors indicate the documentation−state of the Project/File (red = not documented, yellow =
partially and green = fully documented). A master−index can be generated by request. Each generated
.html−file can be modified by the T−IDE HTML−editor.

This tool is available in the full version of T−IDE.

The Shell :

The purpose of this tool is to catch the results of a lint− or compiler−run. By selecting an error−message you
can directly navigate back to the source−code−location to fix the problem.

Supported platforms (T−IDE 2.0) : Linux, Solaris, WIN−XX.

Other platforms will be available on request.

 Note: This is just a preview to the new release, its not available yet!

NOTE: to bring this great tool to market, I am either looking for an investor,
who helps doing the final things or an interested company willing to

TIDE_Tour

11

purchase the source (including me).

If you have specific questions please contact Michael Haschek, CST

TIDE_Tour

12

mailto:miha@t-ide.com

Logging by Example

A short introduction to the tcllib
logger package.

Michael Schlenker <mic42@users.sourceforge.net>

Why use logger?

� Part of tcllib
� Hierarchical logging
� Fully introspectable
� Cool debug features

Prelaunch Checklist

� Install Tcllib
http://tcllib.sourceforge.net

� Start your favorite Tcl console e.g. tkcon
� Load the logger package
package require logger

A basic logger
package require logger ;# load the package

set log [logger::init global] ;# Initialize a logger service

${log}::warn "A warning message" ;# send a message to the log

${log}::setlevel error ;# ignore all messages below

${log}::warn "Second warning" ;# this is ignored

[Thu May 26 03:08:20 +0200 2005] [global] [warn] 'A warning message'

Default format

Timestamp Service

Loglevel

Message

A logger tree
package require logger ;# load the package

set log [logger::init global] ;# Initialize a logger service

set child [logger::init global::child] ;# Initialize a child service

${log}::warn "A warning message" ;# send a message to the log

${log}::setlevel error ;# ignore all messages below

${log}::warn "Second warning"

${child}::warn "Second warning" ;# this is ignored

Simple logprocs
proc myerror {txt} {puts "Error logged:\n$txt"} ;# define a logproc

${log}::logproc error myerror ;# and assign it

puts [${log}::logproc error] ;# introspect it

proc mycritical {txt} { ;# a fancy logproc

puts "Critical problem:\n$txt" ;# introspecting its caller

puts "Caller: [uplevel 1 info level 0]"

}

${log}::logproc critical mycritical ;# assign it

proc someproc {} {${::log}::critical "A serious problem"}

someproc

Critical problem:

A serious problem

Caller: someproc

Complex logprocs

• Log to a file
• Log to syslog / Windows event log
• Log to a different thread
• Log to a different host using comm
• Log to a database
• Log to a Tk text widget

Log to a text widget

logtotext.tcl in examples/logger of tcllib CVS
(160 LOC including comments)

Using logger with
XOTcl and SNIT

• xotcl-logger.tcl (Proof of concept)
logger::xotcl::Logger Log –servicename global –loglevel warn
Log log error "A simple error message"
Log setlevel warn

• snit-logger.tcl (Experimental)
logger::snit::Logger Log –servicename global –loglevel warn
Log log error "A simple warn message"
Log configure –loglevel error
Log setlevel warn

logtotext.tcl in examples/logger of tcllib CVS
(160 LOC including comments)

Planned Development

• New logproc interface with format string
support for timestamp, stack trace etc.

• Example modules for logging to file,
syslog, distributed logging with comm

• logger::util package with useful but non-
essential tools

	gruppe
	1_tequila
	tequila-pres
	2_tile-eurotcl2005
	Overview
	Getting started
	How styling works
	Widget Elements
	Widget layouts
	Styles and States
	Themes

	Migration Problems
	Additional widgets
	Tile Core Elements

	3_making-tcl-objectoriented
	4_ratcl
	ratcl-pres
	5_biotcl
	biotcl-pres
	Table of Contents
	Biotcl - Framework for Computing Biology
	Dr. Detlef Groth
	Max-Planck-Institut for Molecular Genetics Berlin, Germany
	Outline
	Motivation
	Syntax
	Prerequisites
	Architecture
	Metakit RDBMS
	TSQL4MK
	TSQL4MK console
	TSQL4MK library
	Parser Infrastructure
	Tcl-Scanners
	WC with ifickle: iwc-fickle.fcl
	Scanner Usage
	Source iwc-fickle.tcl
	WC-Results
	FastaScanner
	Scanner-Results
	Database Structure - dgMKViewer
	Webserver
	Webserver-Implementation
	GUI - JSComponents
	Downloading == Installation
	Configuration
	Status
	Scanner-Parser Status
	Outlook
	Acknowledgement
	About Me
	Note

	6_sharpentcle2005
	7_jaspers
	Abstract

	10_Doing3DWithTcl
	Overview
	Wish and reality
	Requirements
	Requirement

	Discussion of available solutions

	Implementation
	SWIG-based OpenGL wapper
	Extension of the Togl wdget
	Utility functions
	The Vector command
	Information utilities
	Tk photo mapping
	Additional tclogl utilities

	Caveats / Common pitfalls
	Open issues
	Results
	References

	11_Tcl_Tk_Potpourri
	Abstract
	XML RDB Mapping
	INIT
	ERASE
	START name script
	STOP name script
	CONTEXT context script
	SET name value
	VAR name value
	OPTIONAL name script
	GET name
	UNSET name
	DO ?tupel? script
	ID sequence
	FORALL items resultset script

	Developing an accounting application using XML RDB mapping
	DTD, XML and XML RDB mapping examples

	Parser for context free languages
	Creating syntax diagrams out of EBNF descriptions

	Similarity search
	Example of use: Merge of translation memories

	Tcl CGI Pages
	Translator Pool for Pangea: TP²
	System structure
	System architecture

	Code example: action_reference_project.tcl
	Screen shoots

	12_zogl
	tide
	logger

