
SecondEuropean
Tcl/Tk User Meeting

Technische Universität Hamburg – Harburg
7. – 8. June 2001

Foreword

These are the proceedings of the Second European Tcl/Tk User Meeting, held the 7th. and
8th. of June in Hamburg.
For more information about this event or proceedings in PDF format see http://www.
tu-harburg.de/skf/tcltk .
All copyrights et cetera remain at the original author, please contact them before using this
material.

Carsten Zerbst (mailto:Zerbst@Tu-Harburg.de)

Contents

1 The (Active) State of Tcl 3

2 Why we use Tcl as strategic development platform. 13

3 LegacyTcl 33

4 XOTcl @ Work 39

5 Tcl for dynamic Web applications 61

6 tDOM 100

7 Game Scripting with Tcl 117

8 Generating test programs with TestMake 127

9 Creating generalised Tools for Database Access using Tcl/Tk 139

10 Using TCL as Middleware for Parallelizing Environment Development 144

11 Tcl on the iPaq 155

12 ENIÄK – High-level construction of user interfaces 161

13 mod dtcl web scripting with Tcl 169

http://www.tu-harburg.de/skf/tcltk
http://www.tu-harburg.de/skf/tcltk
mailto:Zerbst@Tu-Harburg.de

1 The (Active) State of Tcl

Andreas Kupries
ActiveSTATE (http://www.activestate.com)

http://www.activestate.com

June 2001, slide 1The (Active) State of Tcl
The (Active) State of Tcl

June 2001, slide 2The (Active) State of Tcl

Agenda

� Introduction

� Andreas Kupries, ActiveState Corporation

� What has happened since Tcl’Europe 2000

� Developments in the Tcl community

� Developments of the Tcl/Tk core

� Future directions

4

June 2001, slide 3The (Active) State of Tcl

History of Tcl

1988 1989 1990 1991 1992 1993 1995 1997 1998

100 1000 10,000 1M ?100,000

2. Open source distributions
from U.C. Berkeley:

• Easy GUIs under Unix
• Extensible applications

2. Open source distributions
from U.C. Berkeley:

• Easy GUIs under Unix
• Extensible applications

3. Tcl enhanced at Sun Microsystems:
• Windows, Macintosh ports
• Web/Internet support
• Java support

3. Tcl enhanced at Sun Microsystems:
• Windows, Macintosh ports
• Web/Internet support
• Java support

4. Scriptics formed:
• Evolve and extend Tcl platform
• Create development tools

4. Scriptics formed:
• Evolve and extend Tcl platform
• Create development tools

1. Tcl created as general-purpose
command/scripting language

1. Tcl created as general-purpose
command/scripting language

500,000

1994 19991996 2000

6. Scriptics/Ajuba Acquired by
Interwoven (Nov.)

6. Scriptics/Ajuba Acquired by
Interwoven (Nov.)

2001

7. ActiveState introduces
Tcl support and services

7. ActiveState introduces
Tcl support and services

5. Tcl Core Team
formed (August)

5. Tcl Core Team
formed (August)

June 2001, slide 4The (Active) State of Tcl

Recent History of Tcl

5. Scriptics/Ajuba Acquired by
Interwoven; Tcl/Tk core moves
to SourceForge; TclPro open
sourced (Nov.)

5. Scriptics/Ajuba Acquired by
Interwoven; Tcl/Tk core moves
to SourceForge; TclPro open
sourced (Nov.)

6. ActiveState introduces Tcl
support and services (Feb)

6. ActiveState introduces Tcl
support and services (Feb)

4. Tcl Core Team
formed (August)

4. Tcl Core Team
formed (August)

2000 2001

8.3.3 (May)8.3.3 (May)

8.3.0 (Feb)8.3.0 (Feb)

8.3.1 (Apr)8.3.1 (Apr) 8.3.2 (Aug)8.3.2 (Aug)

8.4a1 (June)8.4a1 (June) 8.4a2 (Nov)8.4a2 (Nov)

1. Tcl’2K in Austin (Feb)1. Tcl’2K in Austin (Feb)

2. Scriptics becomes
Ajuba (May)

2. Scriptics becomes
Ajuba (May)

7. Tcl’Europe 2001
(June)

7. Tcl’Europe 2001
(June)

9. 8th Tcl Conference
(July)

9. 8th Tcl Conference
(July)

8.4a3 (June?)8.4a3 (June?)

8. ASPN/Tcl
Launch (July)

8. ASPN/Tcl
Launch (July)

……
3. Tcl’Europe 2000

(June)

3. Tcl’Europe 2000
(June)

R.I.P

5

June 2001, slide 5The (Active) State of Tcl

Status as of Tcl’Europe 2000

� June 2000

� Tcl/Tk 8.4a1 recently released

� Tcl/Tk 8.3.1 was the stable version (now part of RedHat
and SuSE standard distributions)

� Scriptics (now Ajuba) was focusing on B2B applications

June 2001, slide 6The (Active) State of Tcl

� Formed in August 2000 with 14 charter members based on
community voting:

� Formed to collectively manage development of the core

Now… Tcl Core Team

Brent WelchJim Ingham

Don PorterGeorge Howlett

John OusterhoutJeffrey Hobbs

Jan NijtmansD. Richard Hipp

Michael McLennanMark Harrison

Karl LehenbauerDonal Fellows

Andreas KupriesMo DeJong

6

June 2001, slide 7The (Active) State of Tcl

TCT: TIP Initiatives

� Started TIP process for Tcl
http://www.cs.man.ac.uk/fellowsd-bin/TIP/

� TIPs are intended to guide and document development on
the core
� The focus is on new or changing features, not bugs
� Voted on by the TCT following community discussion using

the TYANNOTT process
� Currently 34 TIPs (9 active project TIPs)
� Tcl/Tk maintainers are a separate group
� TCT discussion is open on the public mailing list:

tcl-core@lists.sourceforge.net

June 2001, slide 8The (Active) State of Tcl

Tcl/Tk Maintainers

� Maintainers oversee a specific area of the core, as defined in
TIP #16 for Tcl and TIP #23 for Tk

� They assist, but are not solely responsible for, fixing of
bugs, adding documentation in their area

� They are responsible for reviewing code and approving
code changes to their area

� Open to anyone willing to learn the core

� New volunteers always welcome

7

June 2001, slide 9The (Active) State of Tcl

The Maintainers…

� Tcl (TIP #24):

� Tk (TIP #30):

Mo DeJongDonal FellowsJan NijtmansChengye Mao

Vince DarleyKevin GriffinFrédéric BonnetGeorge Smith

Jeff HobbsTodd HelfterPeter SpjuthAllen Flick

Mo DeJongDonal FellowsJan NijtmansDon Porter

Vince DarleyRolf SchroedterAndreas KupriesMiguel Sofer

Jeff HobbsKevin KennyJim InghamDaniel Steffen

June 2001, slide 10The (Active) State of Tcl

Scriptics/Ajuba…

� Scriptics became Ajuba Solutions in May 2000
� New focus as a B2B infrastructure company

� Interwoven: content management company in need of
B2B…
� Ajuba assimilated on Nov 1, 2000
� Tcl/Tk moved to SourceForge:

http://tcl.sf.net/
� TclPro open sourced:

http://tclpro.sf.net/
� Further open source work not continued at Interwoven

� Most other projects at Ajuba moved to SourceForge

R.I.P

8

June 2001, slide 11The (Active) State of Tcl

Tcl/Tk at SourceForge

� SourceForge provides a wealth of services for open source
projects
� Bug and patch database
� Mailing lists
� CVS repositories
� File server
� Web pages

� Managed by TCT and Tcl/Tk maintainers

June 2001, slide 12The (Active) State of Tcl

Tcl at ActiveState

� Jeff Hobbs hired in Feb 2001

� Andreas Kupries follows soon after

� Wealth of scripting knowledge at ActiveState

� What ActiveState provides for Tcl:
� Improvements to open source Tcl core
� High quality development tools

� Komodo
� ASPN/Tcl

� Commercial support infrastructure
� Professional services: training and consulting

9

June 2001, slide 13The (Active) State of Tcl

In the Community…

� The Tcl’ers Wiki has increased in activity:
� http://www.purl.org/tcl/wiki
� Now with interactive chat

� The Tcl Developer Xchange has moved:
� http://www.purl.org/net/tclhome
� http://tcl.ActiveState.com/

� Tcl-URL! continues to provide weekly news:
� http://www.ddj.com/topics/tclurl/
� http://tcl.ActiveState.com/tclurl/

� Lots of extension updates

June 2001, slide 14The (Active) State of Tcl

Tcl/Tk Today

� Download rate steady (~30,000 / month)
� Windows: 60%
� Unix: 45%
� Mac: 5%

� Only patch releases since last year

� Stable release now at 8.3.3
� Completely new I/O core (for 8.3.2)
� High degree of stability
� Improved locale support in Tk

10

June 2001, slide 15The (Active) State of Tcl

Tcl/Tk 8.4

� Experimental release, now at 8.4a2

� Still in feature-add mode

� New ‘spinbox’ widget

� Several minor core feature enhancements

� Significant work on performance
� Near or better than 8.0, with unicode and thread safety.

� Several TIPs in the pipeline
� New virtual file system code
� ‘lset’ command
� TEA 2.0

June 2001, slide 16The (Active) State of Tcl

Future Directions

� The core is guided by community input
� Anyone can write a TIP
� Anyone can be a core maintainer

� What issues are most pressing?

� Open discussion

11

June 2001, slide 17The (Active) State of Tcl

Tcl Roadmap Poll

� Improve Tcl performance

� Archive file support (.jar/.zip)

� Standard libraries

� Unix binary distributions

� Tcl Installer

� Stand-alone executable support

� …

� …

� …

� Smaller, more modular core

� Drag & Drop

� Windows Tk Performance

� Printing support

� Tk abstraction layer

� Megawidgets
(roll your own)

� New Widgets

� …

� …

� …

12

2 Why we use Tcl as strategic development

platform.

Andrej Vckovski (mailto://andrej.vckovski@netcetera.ch)
netcetera (http://www.netcetara.ch)

mailto://andrej.vckovski@netcetera.ch
http://www.netcetara.ch

Netcetera AG 1

Tcl/Tk

1 netcetera1 netcetera

Tcl/Tk

Why we use Tcl as
strategic development
platform.

Andrej Vckovski
andrej.vckovski@netcetera.ch

Tcl User Meeting Hamburg, 2001

Tcl/Tk

2 netcetera

Overview

I Background
II What are we using Tcl for?
III Selling Tcl and comparing it.
IV Some Conclusions

14

Netcetera AG 2

Tcl/Tk

3 netcetera

I
Background

� Motivation
� Who is Netcetera?

4 netcetera

Tcl/Tk
Motivation

� Tcl is a development environment, which is not
well-known outside of the Tcl community.

� As quotes on Scriptics (RIP) website have

shown, many people have problems convincing

customers and management to use Tcl in a

project.
� This IS a success story!

15

Netcetera AG 3

5 netcetera

Tcl/Tk
Who is Netcetera?

� Founded 1995/1996 as spin-off of University of
Zurich with a team of 5

� Initial business idea:
� Do everything related to Internet, except

Internet access (ISP) and graphical web site

design.
� Use our expertise in Unix and related

technologies.

6 netcetera

Tcl/Tk
Who is Netcetera?

� Netcetera 2001:
� approx. 60 people (40 engineers, 8 operations

and marketing/communication, 12 project
management)

� Mostly application development for customer
projects

� No strategic focus on financial industry, but
that‘s what happens if you are located in
Zurich, Switzerland.

16

Netcetera AG 4

7 netcetera

Tcl/Tk
Who is Netcetera?

� How do we work?
� Most development happens on Unix (Solaris,

Linux and some AIX)
� Most engineers have Windows NT boxes with

an X-Server
� Most development is in Tcl (variants ...) and

Java
� The IDE we are using is mostly Emacs with

Makefiles

8 netcetera

Tcl/Tk
A few figures

6788

568

2519

3701

source files

1 285 122Total

134153 365C/C++

270337 228Java

214794 529Tcl

loc/filelines of code

17

Netcetera AG 5

Tcl/Tk

9 netcetera

II
What are we

using Tcl for?

� Our initial motivation for Tcl
� Various areas where we use Tcl
� A few applications explained

10 netcetera

Tcl/Tk
Why did we start using Tcl?

� Our first application was an online order entry for a chain

of pizza delivery services.
� There was experience with CGI programming using Tcl,

but:
� We believed, we need to do it in C++ for

„professionalism“ and performance.
� Still, we embedded a Tcl interpreter for the only reason

to have a configuration file parser (configuration was a

Tcl script that was evaluated and that did set some

variables).

18

Netcetera AG 6

11 netcetera

Tcl/Tk
Why did we start using Tcl?

� The C++-approach was extended to a C++-based

framework for CGI applications (web++), now heavily

using the very flexible configuration mechanism provided

by the embedded Tcl interpreter.
� Developers soon started to place most business logic

into the configuration files, because it was much easier.
� As a result, we designed websh, which was a Tcl-based

scripting environment using the web++-framework.

12 netcetera

Tcl/Tk
Why did we start using Tcl?

� To maintain a certain focus and critical mass, we

decided to limit the number of platforms and

languages we‘re using (mainly Java and Tcl).
� So we started doing also other stuff in Tcl

(internal applications, ...)
� Today, we use Tcl for:

19

Netcetera AG 7

13 netcetera

Tcl/Tk
... web applications on demand

� Dynamic Web sites
� E-Commerce Applications, Shops
� Banking / Stock Quotes
� Community Systems (e.g., researcher network

for European Space Agency missions)
� Intranet Applications

14 netcetera

Tcl/Tk
... CORBA Services

� Based on a framework (TACO), we can easily

develop CORBA services where the business

logic is implemented in Tcl.
� A few high-volume and mission-critical system in

Switzerland largest bank use this approach.
� Framework also automatically generates test

clients that allow scripted test suites.

20

Netcetera AG 8

15 netcetera

Tcl/Tk
... internal tools

� Most internal tools for our IT operations, e.g.:
� E-mail-archiving
� Backup control
� DNS administration
� Network and system monitoring
� Intranet and documentation tools
� CRM, data warehouse, and problem reporting

applications
� ...

16 netcetera

Tcl/Tk
... process support

� Tools that automate/control aspects of our
software development process, such as:
� Tools for version and configuration

management (on top of CVS)
� Tools for controlled builds (also for Java and

C/C++ projects)
� Documentation support („tcldoc“, similar to

javadoc)

21

Netcetera AG 9

17 netcetera

Tcl/Tk
... test automation

� Tcl is very useful for automated testing,
regression testing:
� for Tcl applications themselves
� for Java using tclblend

18 netcetera

Tcl/Tk
... gluing legacy applications

� The extensibility of Tcl makes it an ideal candidate to

interface
� legacy systems
� strange hardware
� anything that you know you need to interface but not

yet what to do with it (i.e, make an extension that
gives you access to the subsystem)

� such extensions also provide a nice way to provide

emulators (e.g., Tcl only implementation of the

interface for development purposes)

22

Netcetera AG 10

19 netcetera

Tcl/Tk
... products

� A few packaged products are built with Tcl:
� Netcetera SiteControl, a site (and content)

management system
� Netcetera PayControl, a multi-channel

payment integration platform
� wemlin, a test automation product for web

applications

20 netcetera

Tcl/Tk
... embedding Tcl

� Websh3
� Standalone interpreter, loadable extension and

Apache module that allows easy development of web

application. Open Source, written in C.
� Netcetera Cache Manager

� A high-performance, multi-threaded cache manager
that is built around Tcl‘s hash tables and works as a

„main-memory“ database with many thousands of
operations per second, written in C and C++.

23

Netcetera AG 11

Tcl/Tk

21 netcetera

III
Selling Tcl

and
comparing

� Some Tcl „USP“ for
� Problems when „selling“ Tcl
� Comparing with Perl and Python

22 netcetera

Tcl/Tk
Some Tcl „USP“ for us

� Embeddable
Tcl interpreter can be added into existing applications,
providing a great way for high level of configuration

� Thread safety
Interpreters can be used in threaded applications

(e.g., web servers, CORBA services)
� Unicode

Is getting mandatory (XML, ...)

24

Netcetera AG 12

23 netcetera

Tcl/Tk
Some Tcl „USP“ for us

� Event model
Very easy model for asynchronous applications (file

events, timer events, ...).
� Platform independency

Tcl code runs on all of our supported platforms.
� Packaging

Tcl can be easily „packaged“ into a few, compiled files

for easy and controlled delivery (but: it is getting

harder).

24 netcetera

Tcl/Tk
Intermezzo: How we package

� All Tcl source modules are concatenated into a simple
file (we do not use Tcl‘s package mechanism).

� A small utility generates a shared library out of the file
(the init code of the shared library optionally decrypts and
then evaluates a large string).

� Standalone applications are started from a bourne-shell
wrapper that exec‘s the interpreter and then loads the
shared library.

� Motivation:
� Have a minimal number of files to package and

distribute.
� Allow various different applications and versions on a

system.

25

Netcetera AG 13

25 netcetera

Tcl/Tk
Problems when „selling“ Tcl

� „Tcl is not object-oriented, modern SW

development is object-oriented“
� My answer

� There are object-systems for Tcl, but most
importantly:

� Object-orientation is not really a language feature
but a design issue (even though, admittedly, „OO“
languages make an OO design more natural).

� You can program object-oriented in Tcl as you can
procedural in Java, but it needs more discipline.

26 netcetera

Tcl/Tk
Problems when „selling“ Tcl

� „Tcl is slow“
� My answer

� Most language comparisons show that Tcl is
slower than other VHLL (very-high-level
languages), but attention: Tcl 8.x has a few
unique features that do have performance
impacts (e.g., Unicode, thread safety, ...).

� Performance is seldom really an issue (you
always have the C-escape).

26

Netcetera AG 14

27 netcetera

Tcl/Tk
Problems when „selling“ Tcl

� „Nobody uses it“
� My answer

� Yes, usage numbers of, e.g., Perl or PHP are

much higher.
� But don‘t forget that Tcl exists within many

commercial packages without telling you

really.
� Tcl is easy to learn.

28 netcetera

Tcl/Tk
Problems when „selling“ Tcl

� „You cannot make high-quality application using a
scripting (toy) language”

� My answer
� Yes, type safety and many data types/structures help

avoid some errors, but:
� No 180°-turns when taking a prototype to a final

product.
� Usually faster implementation.
� Changes of business logic and new features can be

deployed at runtime.

27

Netcetera AG 15

29 netcetera

Tcl/Tk
Problems when „selling“ Tcl

� „You must use Java. Everyone is using it and it
can‘t be wrong“

� My answer
� Ok!
� Java is a great language, but not for

everything.
� I haven‘t yet seen a useful Web application

environment for Java (Servlets and JSP suck).

30 netcetera

Tcl/Tk
My comparison to Perl

� I am not a big Perl user, so my assessments might be

wrong, it is an outside view:
� (-) Perl has more ‚implicit‘ things and special variables
� (+) Perl has better data structure support
� (+) Perl has a better contributed sources archive
� (-) Perl has more ways to do the same thing
� (-) Perl is harder to package
� (+/-) There is more ‚in the box‘ (e.g., system calls), but

less portability

28

Netcetera AG 16

31 netcetera

Tcl/Tk
My comparison to python

� I am not a big Python user, so my assessments might be
wrong, it is an outside view:
� (+) Python has a cool object model, and exception

model
� (-) Python has uncool intrinsic things (e.g., the

underscores, meaningful white space
� (+) Python has many pre-packaged useful things
� (-) Will be hard to package your application
� (+/-) Seems to be very similar with regard to its power

to Tcl
� (-) Tcl has a long history, Python is still young

Tcl/Tk

32 netcetera

IV
Conclusions

� Would be switch?
� Our top wishes
� Summary

29

Netcetera AG 17

33 netcetera

Tcl/Tk
Would we switch?

� Currently, we are happy with Tcl, but are we

innovative?
� The best language is the one that you know

best. Is it?
� How many languages can a software

engineering company bear?
� If we would choose now, we might also use

Python, but not necessarily.

34 netcetera

Tcl/Tk
Our top wishes for Tcl‘s future
(unsorted)

� OO and Tcl
� Embed one of the object models

� Documentation
� Have a standardized way to document Tcl code à la

javadoc.
� Java and Tcl

� Speed up Jacl. Scripting environments for Java are a
hot issue.

� Tools
� Supplement the TclPro-tools with coverage analysis.

Or better, a generic instrumentation engine.

30

Netcetera AG 18

35 netcetera

Tcl/Tk
Summary

� We are using Tcl in our daily business, in

mission critical applications and to earn money.
� Tcl is mature, robust and useful, but it lacks the

hipness of Python, Pike and Java as well as their
advocacy.

36 netcetera

Tcl/Tk
Summary

� The context of application development
(environments, tools, know-how sharing) is a

very important thing. Sticking to a few such

environments makes you much more productive,
but there are high innovation risks.

31

Netcetera AG 19

Tcl/Tk

37 netcetera

Q & A

� Questions
� Comments

32

3 LegacyTcl

Franco Violi (mailto:fvioli@metodo.net)

mailto:fvioli@metodo.net

34

35

36

37

38

4 XOTcl @ Work

Gustaf Neumann
(mailto:Gustaf.Neumann@
wu-wien.ac.at)
Department of Information Systems
Vienna University of Economics

Uwe Zdun
(mailto:uwe.zdun@uni-essen.de)
Specification of Software Systems
University of Essen

mailto:Gustaf.Neumann@wu-wien.ac.at
mailto:Gustaf.Neumann@wu-wien.ac.at
mailto:uwe.zdun@uni-essen.de

XOTcl @ Work

Gustaf Neumann Uwe Zdun
Department of Information Systems Specification of Software Systems

Vienna University of Economics University of Essen

Vienna, Austria Essen, Germany

gustaf.neumann@wu-wien.ac.at uwe.zdun@uni-essen.de

Second European Tcl/Tk User Meeting, June, 2001.

XOTcl @ Work June, 2001

What is XOTcl

u XOTcl = Extended Object Tcl

u “High-level” object-oriented programming

u Advanced Component Glueing

u XOTcl is freely available from: http://www.xotcl.org

u Outline:

– Scripting and object-orientation
– Programming the “basic” XOTcl Language
– Component Glueing
– XOTcl high-level language constructs
– Some provided packages

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 1

40

XOTcl @ Work June, 2001

Tcl-Strengths

Important Ideas in Tcl:

u Fast & high-quality development through component-based approach

u 2 levels: “System Language” and “Glue Language”

u Flexibility through . . .

– Dynamic extensibility,
– Read/write introspection,
– Automatic type conversion.

u Component-Interface through Tcl-Commands

u Scripting language for glueing

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 2

XOTcl @ Work June, 2001

Motivation for XOTcl

u Extend the Tcl-Ideas to the OO-level.

u Just “glueing” is not enough! Goals are . . .

– Architectural support
– Support for design patterns (e.g. adaptations, observers, facades, . . .)
– Support for composition (and decomposition)

u Provide flexibility rather than protection:

– Introspection for all OO concepts
– All object-class and class-class relationships are dynamically changeable
– Structural (de)-composition through Dynamic Aggregation

– Language support for high-level constructs through powerful interceptors
(Filters and Per-Object Mixins)

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 3

41

XOTcl @ Work June, 2001

XOTcl Overview

Tcl

Extended OTcl

dynamic aggregations
nested classes
assertions
per-object mixins
per-class mixins
filters
scripted components

Adopted from OTcl:

object and class system
multiple inheritance
method chaining
meta-classes
read/write introspection
dynamic typing

New Functionalities:

...

Other
Extensions

Tcl

Tcl

namespaces
introspection
extensibility
embeddability

dynamic type system with automatic conversion
language dynamics

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 4

XOTcl @ Work June, 2001

XOTcl is similar Tcl

u XOTcl is dynamic:

– Definitions of objects and classes can be extended and modified at runtime
– Classes and objects can be dynamically destroyed
– All relationships between object and classes are fully dynamic

u XOTcl is fully introspectible with info methods

u Syntax similar to Tcl

u Objects and classes are Tcl commands

u Objects and classes “live” in a Tcl namespace

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 5

42

XOTcl @ Work June, 2001

Example: Soccer Team

Schalkename

Gelsenkirchenlocation

Operations:
new player
transfer player

Emile Mpenzaname

Forwardrole

u Soccer team abstraction:

– Has members (players)
– Has properties (name, location, type)
– Players can be added and transfered
– Each player has properties (name, player role)

u Similar abstractions in many “real-world” applications

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 6

XOTcl @ Work June, 2001

Soccer Team In Ordinary Tcl

set teams($teamid-name) "Schalke"

set teams($teamid-location) "Gelsenkirchen"

set teams($teamid-playerids) {}

set $id-players($playerid-name) "Emile Mpenza"

...

proc newPlayer {teamid name} {

global teams $teamid-players

...

return $playerid

}

;# Associative array for teams

;# Player array for each team

;# Procedure

;# Import global structure

;# Work on global structure

Problems: Missing data encapsulation, global data, name collision, no bundled
behavior/data, no specialization/generalization, central modification is hard to achieve,
. . .

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 7

43

XOTcl @ Work June, 2001

Object-Oriented Solution

u Initial Design: Soccer team aggregates players.

u Used Concepts:

– Classes abstract over soccer team and player
– Instance variables
– Instance methods
– 1-to-many relationship
– (Dynamic) object aggregation

SoccerTeam Player

newPlayer
transferPlayer
...

location
name
...

name
playerRole
...

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 8

XOTcl @ Work June, 2001

Objects in XOTcl

u Each created object has Object as class or superclass. Methods on Object

are usable for all objects

u Each object can have object-specific variable slots and methods (procs)

u Variables and methods are stored in the object’s namespace

u Each object has a class

player1

instance-of

Object

init
destroy
set
instvar . . .

print()

name

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 9

44

XOTcl @ Work June, 2001

Creation and Definition of Objects

Object player1

player1 set name "Emile Mpenza"

player1 proc print {} {

[self] instvar name

puts "Name: $name"

}

player1 print

player1 destroy

;# Object definition

;# Set instance variable

;# Print procedure for name

;# Get var into proc scope

;# Print name to stdout

;# Call ‘‘print’’

;# And delete player object

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 10

XOTcl @ Work June, 2001

Objects versus Classes

u Instances (objects) can be derived from a class

u A class describes the intrinsic type of an object:

– Common data slots
– Instance methods (instprocs)
– . . .

u Classes in XOTcl “know” about their instances and vice versa (introspection)

u Classes in XOTcl have all object abilities plus class abilities:

– Deriving objects
– Instance method definition
– Inheritance
– . . .

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 11

45

XOTcl @ Work June, 2001

Class Instances

Object

Player

name
playerRole

print()

Team

player1

instance-of

player2

player3

player4

team1

team2

instance-of

Classes

is-instance-of
relationship

Objects

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 12

XOTcl @ Work June, 2001

Class Definition and Instance Methods on Classes

Class Player -parameter {

name

{playerRole NONE}

}

Player instproc print {} {

[self] instvar name playerRole

puts "Name: $name"

puts "Player Role: $playerRole"

}

Player emile -name "Emile Mpenza" \

-playerRole Forward

emile print

;# Class definition

;# Print instance method

;# Definition of a player object

;# Calling print operation

Stepwise refinement of class definition, syntax & conventions similar to Tcl

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 13

46

XOTcl @ Work June, 2001

Object Construction/Destruction

u Constructor – Special instance method init:

Player instproc init args {

perform initializations

}

Player p -name "My Name"

create default values initalloc "-" init methods

u Destructor – Special instance method destroy:

Player instproc destroy args {

perform destruction

}

p destroy

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 14

XOTcl @ Work June, 2001

Introspection

u In XOTcl every language is introspective and dynamic ⇒ Similar to Tcl.

u Using the info instance method.

u Example – Reading instproc definition:
Player info instbody print

u Example – List of instances:
Player info instances

u Object- vs. class-specific introspection options. Example – Obtaining an
object’s class:
player1 info class

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 15

47

XOTcl @ Work June, 2001

Callstack Information

u Retrieve information that is dynamically created on the callstack:

self current object name

self class current class name

self proc current proc/instproc name

self callingobject calling class name

self callingclass calling object name

self callingproc calling proc/instproc name

.

u Example – Discriminating on calling object type:

Player instproc reactOnPlayer {} {

set co [self callingobject]

if {[$co istype Player]} {...}

...

}

example instproc

get calling object

type => player-specific behavior

else: default behavior

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 16

XOTcl @ Work June, 2001

Inheritance

u Defining a class hierarchy with “is-a” relationships

u Generalization/specialization ⇒ Reusing class definitions

ClubMember

name

Player

playerRole

TrainerPresident

Class ClubMember -parameter {name}

Class Player -superclass ClubMember -parameter {{playerRole NONE}}

Class Trainer -superclass ClubMember

Class President -superclass ClubMember

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 17

48

XOTcl @ Work June, 2001

Multiple Inheritance

u Multiple Inheritance =
one class has more than
one superclass

u Directed Acyclic Graph

→ Linearization with
Method Chaining

ClubMember

name

Player

playerRole

TrainerPresident

PlayerTrainer

Class PlayerTrainer -superclass {Player Trainer}

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 18

XOTcl @ Work June, 2001

Method Overloading and Next Path

u Each method call is performed on an object

u If the method is not defined on the object, then the class and its superclasses
are searched

u If the method is found it may contain a next call.

u Then the “next” method on the class graph is searched and mixed into the
current method

u “next” determines if, at which position, and with which arguments the next
method is called

u Per default, “next” calls with the same arguments

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 19

49

XOTcl @ Work June, 2001

Method Chaining: Extending Print Operation

Class ClubMember -parameter {name}

ClubMember instproc print {} {

[self] instvar name

puts "Name: $name"

next

}

Class Player -superclass ClubMember \

-parameter {{playerRole NONE}}

Player instproc print {} {

[self] instvar playerRole

puts "Player Role: $playerRole"

next

}

;# Class definition

;# Default print operation

;# Print ‘‘name’’

;# Subclass definition

;# Extended print operation

;# Print player role

;# Call superclass implementation

Composability: next functions without naming the targeted superclass.

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 20

XOTcl @ Work June, 2001

Method Chaining: Next Path for Player Trainer

Player

playerRole

TrainerPresident

PlayerTrainer

Object

next

next next

next

ClubMember

name

Class-Path Linearization: Each class is visited once. Unambigous precedence order.

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 21

50

XOTcl @ Work June, 2001

XOTcl Class and Object System

Object

instance-of

instance-of

Class

Common Root Class

instance-of

Meta-Classes

Classes

Objects

...

...

instance-of

...

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 22

XOTcl @ Work June, 2001

Dynamic Re-Classing

u Dynamic classes and superclasses ⇒ Modeling life-cycle of objects.

u Example – Player becomes president:

Player p -name "Franz Beckenbauer" \

-playerRole PLAYER

...

$fb class President

;# Create player

;# Life-cycle induces change

;# Reclassing to President

u Redefining class behavior may imply modifications → specializing class:

Player instproc class args {

[self] unset playerRole

next

}

;# Specializing class operation

;# Delete player role property

;# Call Object->class

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 23

51

XOTcl @ Work June, 2001

Dynamic Object Aggregation

u Dynamic object aggregation: An object system supports dynamic
aggregation iff arbitrary objects may be aggregated or disaggregated at
arbitrary times during execution.

Class Stadium

Class SoccerTeam

SoccerTeam instproc init args {

Stadium [self]::homeStadium

next

}

SoccerTeam bayern

President bayern::president \

-name "Franz Beckenbauer"

bayern::president destroy

;# Class for stadium

;# Soccer team class

;# Constructor

;# Automatically aggregate stadium

;# New team instantiation

;# Aggregate president

;# President leaves club -> disaggregate

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 24

XOTcl @ Work June, 2001

Object Aggregation – Examples

Aggregate with autoname:

SoccerTeam instproc newPlayer args {

eval Player [self]::[[self] autoname player%02d] $args

}

Iterate over children:

SoccerTeam instproc printMembers {} {

puts "Members of [[self] name]:"

foreach m [[self] info children] {puts " [$m name]"}

}

Retrieving club name from parent:

ClubMember instproc getClubName {} {

return [[[self] info parent] name]

}

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 25

52

XOTcl @ Work June, 2001

Object Aggregation – Life-Cycle Issues

u Object creation: Every object is created with an identifier that is unique
in the scope where it was created

u Object hierarchy restructuring: A copy/move/delete operation works on
the subtree of the object hierarchy starting with the named object

SoccerTeam instproc transferPlayer {playername destinationTeam} {

foreach player [[self] info children] {

if {[$player istype Player] && [$player name] == $playername} {

$player move [set destinationTeam]::[$destinationTeam autoname player%02d]

}

}

}

u Object aggregation implies that the whole has responsibility of the life-time
of the parts

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 26

XOTcl @ Work June, 2001

Dynamic Component Loading in XOTcl

u Component in XOTcl:

– Any assembly of several structures, like objects, classes, procedures, functions,
etc.

– Granularity: self-contained entity, i.e. subsystem or substantial part of a
subsystem

u Component has to declare its name and optional version information with:
package provide componentName ?version?

u Component can be loaded with:
package require componentName ?version?

u Automatic component indexing, tracking, and tracing

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 27

53

XOTcl @ Work June, 2001

Component Wrapping

XOTcl

Component Wrappers

C++
Component

Relational
DBMS

...

...

C
Component

DBMS
Wrapper

Implementation
Objects

XOTcl
Component

Export Interface

... ...Component

... Component

Component Wrapper : White-box placeholder for (multi-paradigm) components →
Place for central adaptations, decorations, etc.

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 28

XOTcl @ Work June, 2001

Wrapping a C Component with Explicit Export/Import

Component
Wrapper

C Library

cFunction1

cFunction2

cFunction3
...

tclCommand1

tclCommand2
...

C Part

xotclMethod1

xotclMethod2
...

C-Tcl Wrapper

Basic Component
Functionality

Export Import Component Client
(Usage)

Implementation
Objects

xotclMethodX

xotclMethodY
...

XOTcl Part

A
d

ap
tatio

n

In
terface D

efin
itio

n

E
xp

o
rt/Im

p
o

rt C
o

n
fig

u
ratio

n

u Many different component wrapping schemes: Wrapper Facade, Proxy, . . .

u Different configurations: Tcl C Wrapper, XOTcl C Wrapper, . . .

u Three-Level Component Configuration: Make export and import explicit,
first-class objects

→ Dynamic, runtime replaceability

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 29

54

XOTcl @ Work June, 2001

Problems of a Pure Class-Based Implementation

u Transparency – The client should not rely on concrete implementation details.

u Decoration/Adaptation:

– Concerns that cross-cut the component wrapper hierarchy,
– Object-specific component wrapper extensions or adaptations.

u Coupling of Component and Wrapper

– Should appear as one runtime entity,
– But: Should be decomposed in the implementation.

u Component Loading – Dynamical and Traceable

⇒ Interception Techniques for Flexible Component Wrapping

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 30

XOTcl @ Work June, 2001

Per-Object Mixins for Object-Specific Extensions

A per-object mixin is a class which is mixed into the precedence order of
an object in front of the precedence order implied by the class hierarchy.

u Model behavioral extension for individual

objects (Decorator).

u Model Adapter for individual objects.

u Handle orthogonal aspects not only

through multiple inheritance.

u Intrinsic vs. extrinsic behavior,

similar to roles.

method
invocation

next

instance-of

next

. . .

per-object
mixin

ClubMember

PresidentPlayerSinger

player

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 31

55

XOTcl @ Work June, 2001

Example Code for Per-Object Mixins

Player bayern::franz \

-name "Franz Beckenbauer"

Class Singer

Singer instproc sing text {

puts "[[self] name] sings: $text, lala."

}

bayern::franz mixin Singer

bayern::franz sing "lali"

bayern::franz mixin {}

;# Player object

;# Define the singer class

;# Singing method

;# Register class as per-object mixin

;# Perform singing

;# Better stop it

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 32

XOTcl @ Work June, 2001

Per-Class Mixins

A per-class mixin is a class which is mixed into the precedence order of the instances
of a class and all its subclasses.

Example – Observing the player transfer operation:

Class TransferObserver

TransferObserver instproc transferPlayer \

{pname team} {

puts "Player ’$pname’ is transfered."

puts "Destination Team ’[$team name]’"

[self] set transfers($pname) $team

next

}

SoccerTeam instmixin TransferObserver

bayernMunich transferPlayer \

"Giovanne Elber" chelsea

;# Class definition

;# Transfer observer method

;# Per-class mixin registration

;# Example transfer

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 33

56

XOTcl @ Work June, 2001

Architectural Constraints

u Restrict dynamic classes of sub-hierarchy to be static.

u Requests are split objects with C++ objects ⇒ Dynamic classing is
impossible.

Class RestrictToSubClassOfRequest

RestrictToSubClassOfRequest instproc class args {

set cl [[self] info class]

next

if {![[self] istype Request]} {

[self] class $cl

}

}

Request instmixin RestrictToSubClassOfRequest

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 34

XOTcl @ Work June, 2001

Filters for Cross-Cutting Concerns

A filter is a special instance method registered for a class C. Every time an object of
class C receives a message, the filter is invoked automatically.

→ Aspects that cross-cut several classes in a hierarchy.

ClubMember

Player President

Traced
meta-
class

compositeFilter ()

traceFilter

Traced Component

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 35

57

XOTcl @ Work June, 2001

Example: Trace Filter Definition

package provide xotcl::Traced 0.8

...

Class Traced -superclass Class

Traced instproc traceFilter args {

set r [self calledproc]

if {[[self regclass] exists operations($r)]} {

puts stderr "CALL [self]->$r"

}

return [next]

}

Traced instproc init args {

[self] array set operations {}

next

[self] filterappend Traced::compositeFilter

}

;# Define component

;# Meta-class definition

;# Trace filter method

;# Get callstack info

;# Check for registered operation

;# Print to stderr

;# Perform target operation

;# Meta-class constructor

;# Register filter

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 36

XOTcl @ Work June, 2001

Example: Traced Filter Usage

package require xotcl::Traced

...

Traced ClubMember \

-addOperations {name ...}

Class Player -superclass ClubMember

Class President -superclass ClubMember

;# Load component dynamically

;# Define traced class

;# Add traced operations

;# Define different subclasses

;# => They are also traced now

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 37

58

XOTcl @ Work June, 2001

Self-Documentation

u XOTcl contains self-documentation/metadata facility with @

u Components:

– Static metadata analysis,
– Dynamic metadata analysis,
– HTML generation.

u Syntax similar to definition of described constructs.

u Flexibly extensible with new tokens and properties.

u Per-default: not interpreted ⇒ no memory/performance wasted, if runtime
metadata is not required.

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 38

XOTcl @ Work June, 2001

Self-Documentation Examples

u Example – Describing a class:

@ Class SoccerTeam {

description {A soccer team class.}

}

u Example – Describing a method:

@ SoccerTeam instproc transferPlayer {

player "name of the player to transfer"

team "destination team"

} {

Description {

Move player object into destination team.

}

return "empty string"

}

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 39

59

XOTcl @ Work June, 2001

XOTcl Component Library & Application

u XOTcl contains rich component library:

– Object persistence
– XML parser and interpreter framework
– RDF parser and interpreter framework
– HTTP Server
– Client-side of various web protocols (HTTP, FTP, LDAP, ...)
– ActiWeb: Active Web Objects and Mobile Code
– Reusable pattern implementations
– . . .

u Example Applications

u Regression Test Suite

u Documentation (Tutorial, Language Reference, Papers, Articles, etc.)

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 40

XOTcl @ Work June, 2001

How to get involved

u Download XOTcl from http://www.xotcl.org

– Source Distribution
– Linux Binaries & RPMs (Red Hat, Debian)
– Windows Binaries

u Mailing List with Archives at:
http://wi.wu-wien.ac.at/mailman/listinfo/xotcl

Gustaf Neumann, Uwe Zdun
University of Essen

Slide 41

60

5 Tcl for dynamic Web applications

Andrej Vckovski, (mailto://andrej.vckovski@netcetera.ch)
netcetera, (http://www.netcetara.ch)

mailto://andrej.vckovski@netcetera.ch
http://www.netcetara.ch

Netcetera AG 1

Tcl/Web

1 netcetera1 netcetera

Tcl/Web

Tcl for dynamic
Web applications
Andrej Vckovski
andrej.vckovski@netcetera.ch

Tcl User Meeting Hamburg, 2001

Tcl/Web

2 netcetera

Overview

I Introduction
II General Features
III Constructive Approaches
IV Template-based Approaches
V Tcl-based Environments
VI A Short websh3 Tutorial
VII Q&A

62

Netcetera AG 2

Tcl/Web

3 netcetera

I
Introduction

� Definitions
� The foundation: HTTP
� Overview of different approaches

4 netcetera

Tcl/Web
What are interactive Web
applications?

� Applications that generate HTML/WML/XML or
other media types on request

� Content is not available as pre-built „files“
� Examples:

� Internet banking
� E-Commerce-applications
� Web-Mail
� you-name-it

63

Netcetera AG 3

5 netcetera

Tcl/Web
Was are software systems for
interactive Web applications?

� Software that
� supports development of such applications
� provides a run-time environment
� provides a tool-set to the developer

6 netcetera

Tcl/Web
The basics: HTTP

� Hyper-Text Transfer Protocol
� Simple, stateless request/response protocol on top of

TCP
� User-agent (browser) sends a request
� Web-server sends a response:

� status code
� MIME-object:

� HTML-text
� image (GIF, JPEG, PNG)
� applet
� sound
� Excel-file
� ...

64

Netcetera AG 4

7 netcetera

Tcl/Web
The basics: HTTP

� On the server, the MIME-object is either available as a

static resource (a file, a database entry) or is dynamically

created by a Web application.
� In most cases, the application generate HTML text.
� A request might contain additional data (e.g., data

entered into a form). These data might be processed by

the Web-server or Web application, respectively.
� The protocol is also available in a secure variant

(HTTPS/SSL/TLS).

8 netcetera

Tcl/Web
The basics: HTTP

User-Agent
(e.g., browser)

Web server

static
object

Web-appli-
cation

HTTP(S)

65

Netcetera AG 5

9 netcetera

Tcl/Web
Various approaches for Web
applications

� Template-based:
PHP, ASP, JSP, ColdFusion, ...

� „Constructive “:
Java Servlets, CGI, ...

� Web-server extensions
Apache Module, NSAPI, ISAPI, ...

� Custom HTTP servers

Tcl/Web

10 netcetera

II
General
features

Protocol handling, session

management, content creation,
access to subsystems,
authentication, logging, debug/test-
support, URL manipulation,
deployment-support, life-cycle

management

66

Netcetera AG 6

11 netcetera

Tcl/Web
HTTP protocol handling

� Decoding of form inputs, file-uploads
� Decoding of URLs
� Various HTTP-methods (GET, POST, PUT, ...)
� Control error codes/status
� Access to and generation of HTTP-headers
� Redirections

12 netcetera

Tcl/Web
Session Management

� HTTP is state-less
� Applications nonetheless often need sessions
� Methods:

� URL encoding (works always)
� Cookies (works most (?) of the time)
� hidden fields in forms

� Server-side persistence of session-context

67

Netcetera AG 7

13 netcetera

Tcl/Web
Content creation

� Generate HTML/XML/WML-code
� Generate GIF/JPEG/PNG
� Generate PDF
� Separation from „design“-aspects if possible

14 netcetera

Tcl/Web
Access to subsystems

� Database management systems
� CORBA-services
� Legacy-systems
� Enterprise Java Beans
� Hardware

68

Netcetera AG 8

15 netcetera

Tcl/Web
Authentication/Security

� User authentication with username/password

(HTTP Basic Authentication)
� Handling client-certificates when using SSL
� Defeat session-hijacking
� URL-encryption

16 netcetera

Tcl/Web
Logging

� Logging of application activities:
� Verbose in development and pilot phases
� Terse in production

� Very important, because applications usually run

7x24h
� Control logging in running systems
� Consolidation/rotation when using multiple

redundant systems

69

Netcetera AG 9

17 netcetera

Tcl/Web
Debug/Test-support

� Support in development phases
� Load generators
� Interactive symbolic debuggers

18 netcetera

Tcl/Web
URL manipulation

� Generation of URLs for self-referencing
� Supplement parameters for flow control
� Encryption

70

Netcetera AG 10

19 netcetera

Tcl/Web
Deployment support

� Installation
� Activation
� Deactivation
� Configuration
� Different profiles for:

� Development
� Test
� Production

20 netcetera

Tcl/Web
Life-cycle management

� Versioning and configuration management
� Build-processes (controlled releases)
� Packaging

71

Netcetera AG 11

Tcl/Web

21 netcetera

III
Constructive
approaches

� Java servlets
� Web server extensions
� CGI
� FastCGI
� Custom Web Servers

22 netcetera

Tcl/Web
Java Servlets

� Java-class running in an application server
� Base for JSP
� Content needs to be generated „by hand“
� Advantage:

� Performance
� Disadvantage:

� „Low-level“

72

Netcetera AG 12

23 netcetera

Tcl/Web
Web server extensions

� Most web servers offer APIs to extend their functionality with

modules in C/C++/Java/...

� These modules often run in the server‘s address-space

� Examples:
� Apache Module API

� iPlanet/Netscape NSAPI

� Microsoft Internet Information Server ISAPI

� Advantage:

� Performance
� Disadvantage:

� Robustness, complexity, „Low-level“

24 netcetera

Tcl/Web
CGI

� Standardized interface that allows Web servers

to call external applications for content creation.
� Advantage:

� Robustness
� Portability

� Disadvantage:
� One process is spawned per request

73

Netcetera AG 13

25 netcetera

Tcl/Web
FastCGI

� Similar to CGI, but a single process can handle

multiple requests
� Advantage:

� Performance
� Disadvantage:

� Robustness, not „standardized“

26 netcetera

Tcl/Web
Custom Web Servers

� Web servers that offer embedded functionalities, e.g.:
� AOL Web Server
� ...

� Existing applications that have an additional Web server
component:
� Printer software
� Mail servers
� ...

74

Netcetera AG 14

27 netcetera

Tcl/Web
Scripting Languages (VHLL)

� For CGI, FastCGI and web server extensions, often

scripting-languages (very-high-level languages) are used
� Definition of a scripting language is vague:

� Often weak typing
� Late compilation
� Self-modifying code

� Examples:
� Perl, Tcl/websh, Python, Pike, VisualBasic,

PHP/ZEND

28 netcetera

Tcl/Web
Scripting Languages (VHLL)

� Usually very expressive (few lines of code for
lots of functionality)

� Robust
� Small memory-footprints (yes!)
� Usually slower that traditional, strong-typed and

early-compiled languages such as C/C++ or
even Java

� Frequently used in web application environments

75

Netcetera AG 15

Tcl/Web

29 netcetera

IV
Template-

based
approaches

� Basics
� Advantages and Disadvantages
� Tools

30 netcetera

Tcl/Web
Template basics

� Developer writes HTML-text with special markup which
contains server-side executed code

� A template-processor parses these templates at runtime
and substitutes application-generated HTML-text in these
places

� Example:
.....
This is HTML with some
<%
set s “embedded“
puts $s %> code
...

76

Netcetera AG 16

31 netcetera

Tcl/Web
Advantages and Disadvantages

� Advantages
� Looks very simple and straight-forward
� Theory:

� Someone who knows HTML can develop
applications

� Design work is separate from development work
� Application programming is content management

� But ...

32 netcetera

Tcl/Web
Advantages and Disadvantages

� Disadvantages
� Real applications have complex flows
� High redundancy of repeatable design

components (navigation, headers, ...)
� No separation of graphical design and

application development
� One click (request) does not lead always to

the same „page“

77

Netcetera AG 17

33 netcetera

Tcl/Web
Advantages and Disadvantages

HTTP transactions vs. business-transactions:

Tcl/Web

34 netcetera

V
Tcl-based

Enviornments

� Overview
� An incomplete list

78

Netcetera AG 18

35 netcetera

Tcl/Web
Tcl-based Enviornments

� There are various commercial and non-
commercial Tcl-based environments for web

applications
� Some of them use Tcl but do not mention it (e.g.,

integration platforms that use Tcl as glue

language)
� Steve Ball‘s WebTcl complete

provides a good overview

36 netcetera

Tcl/Web
An incomplete list

http://starbase.neosoft.com/~claird/comp.lang.tcl/server_side_tcl.html

� cgi.tcl (Don Libes)
� AOL-Webserver (AOL)
� NeoWebScript (NeoSoft)
� mod_dtcl (D. Welton)
� Kinetic Application Processor (M. Harrison)
� Storyserver (Vignette)
� VelociGen Application Server (Binary Evolution?)
� TclHTTPd (Brent Welch)
� websh3, mod_websh (Netcetera)
� ...

79

Netcetera AG 19

Tcl/Web

37 netcetera

VI
A short
websh3
tutorial

38 netcetera

Tcl/Web

80

a short websh tutorial

Simon Hefti

Andrej Vckovski

Ronnie Brunner

Netcetera AG, Zurich Switzerland

Tcl/Tk User Meeting Europe, June 7/8
2001, Hamburg

81

1 Agenda

1) what is webshell ?

2) web application development
approaches

3) webshell tutorial

4) mod_websh

5) summary

82

2 what is webshell ?

web application development framework
reduced to the max

Figure 1 - System Design

webshell provides
a set of commands and data structures for quick and
reliable web application development and deployment

2.1 webshell is

mod_websh
a dynamically loadable Apache module

websh3
a Tcl interpreter

libwebsh.so
a loadable Tcl extension

open source software
download from http://websh.com

quick reference
http://websh.com/quickref.html

83

2.2 key features

live demo
shop application | code

sessions
storage independent session handling

command dispatching
each page of your application is defined in the same
script
command dispatching let's you jump from one page to
the next

encryption
encrypt credit card numbers, URLs, sessions
webshell comes with an easily extensible interface
for strong encryption

logging
your app is live 24 hr a day, year in, year out:
you will need logging

2.3 history

Figure 2 - History

84

2.4 various uses of webshell

webshell for everything
development in CGI

use the advantages of CGI (robust, portable,
stateless) for web application development

deployment with mod_websh
use the advantages of embedded execution
(performance) with mod_websh

operation/housekeeping with websh3
use your thorough know-how of the development
language also to ensure operations and housekeeping

templates with mod_websh
complex applications: don't use ASP or JSP !
... but use mod_websh for dynamic HTML pages

85

3 selected features

1) session management

2) multi-state application

3) logging

4) access to form variables

5) other features

3.1 session management

session tracking
group requests into a transaction
session IDs are stored in URL or in cookies

generation of unique IDs
built-in: file-based sequence number generator
easily extensible

storage independent
sessions also contain data
but session-specific part of API is storage
independent

cookies
also supported - use if you must

3.2 multi-state application

URL generation
including state, time stamps, and session tracking
encrypted by default

dispatching
automatic dispatching into various states within an
application (single binary)

easy definition of control flow
application in single binary - jump from one page to
the next within your application

86

Figure 3 - states of the demo shop

87

3.3 logging

Figure 4 - logging

Figure 5 - log filters

88

3.4 other features

encryption
E-commerce needs encryption
designed for extensibility

buffered output
have as many output channels as you want

memory channels
read from and/or write to variables

control over output
set HTTP headers and error code, use encoding

versatile, transparent URL and form parameters

• URL (web::param) and form variables (web::formvar)
separated

• handle multiple parameters with the same name

multi-part formdata
transparent parsing of urlencoded and
multipart/formdata form data

request handler abstraction
commands are independent of underlying request
handler - same accessor to CGI vars in CGI case and
in mod_websh

encoding
conversion from and to HTML code, uri encoding and
decoding

message protocol
send and receive data in platform-independent format

89

4 webshell tutorial

4.1 hello, world

web::put "Hello, world !
"

demo

4.2 command dispatching

web::command default {
web::put "Hello, world

!"
}

web::command de {
web::put "Hallo, Welt

!"
}

web::dispatch

demo

4.3 logging

web::logfilter add *.alert-debug
web::logdest add *.alert-error command serious
web::logdest add *.warning-debug command normal
web::logdest add -format {$f - $m} *.-debug command
normal

proc serious {msg} {
web::put "$msg
"

}
proc normal {msg} {

web::put "$msg
"
}
web::log demo.info "normal message"
web::log demo.alert "error message"

demo

90

4.4 sessions

web::cookiecontext mycookie

web::command default {

mycookie::init cookiesample

set cnt [mycookie::cget cnt 0]

set newcnt $cnt
incr newcnt

mycookie::cset cnt $newcnt

mycookie::commit

web::put "looks like this is your visit Nr $cnt"
}

web::dispatch

demo

91

4.5 URL parameters and form variables

proc input {name size} {
return "<input type=\"text\" name=\"$name\"

value=\"[web::formvar $name]\" size=\"$size\">"
}
proc submit {value} {

return "<input type=\"submit\" value=\"$value\">"
}
proc dl {code} {

web::put "<dl>"
uplevel $code
web::put "</dl>"

}

proc dtdd {name} {
foreach item [web::param $name] {

web::put "<dt>$name</dt>\n<dd>"
web::put "$item</dd>"

}
}
proc form {action code} {

web::put "<form method=\"POST\" action=\"$action\"
enctype=\"multipart/form-data\">\n"

uplevel $code
web::put "</form>\n"

}
web::command default {

dl {
dtdd a
dtdd b
dtdd c

}
form [web::cmdurl "" [list a 10 a 20 b foo=bar c &]]

{
web::put [input text 10]
web::put [submit send]

}
}
web::dispatch

demo

92

5 mod_websh

5.1 philosophy

reuse interpreters
do not spend time spawning a child or re-loading
application logic

webshell script for everything
deploy the same webshell in CGI and mod_websh
environments

template mode
if you must

Tcl is thread-safe - ideal for Apache 2.0

5.2 set-up
httpd.conf

LoadModule websh_module /path/to/mod_websh.so
WebshConfig /path/to/config_file.tcl

AddHandler websh .ws3
AddHandler websh .wsp

/path/to/config_file.tcl

web::interpclasscfg /path/to/my/shop.ws3 maxrequests 10

proc web::interpmap {f} {
if {[string match *.wsp $f]} {

return /path/to/my/wsphandler
}
return $f

}

/path/to/my/wsphandler

web::putxfile [web::request SCRIPT_FILENAME]

93

5.3 embedded execution

web::initializer {
web::put "<tt>initializing code...</tt>
"
open DB handle
web::command default {

web::put "<tt>"
web::put "max requests allowed for this

interpreter: "
web::put "[web::interpclasscfg [web::interpcfg]

maxrequests]
"
web::put "current request handled by this

interpreter: "
web::put "[web::interpcfg numrequests]
"
web::put "</tt>"

}
}
web::finalizer {

close DB handle
}
web::dispatch
demo (one httpd) demo

94

5.4 template mode

<html>
<head>
<title>"Webshell Server Pages"</title>
<link href="/samples.css" rel="styleSheet"
type="text/css">
</head>
<body bgcolor="#ffffff">

<h1>Welcome to "Webshell Server Pages"</h1>

Local time is <%web::put [clock format [clock
seconds]]%>

</body>
</html>

demo

95

5.5 architecture

Figure 6 - Object Model

96

Figure 7 - Life Time of Interpreters

97

6 summary

6.1 webshell

web application development framework
reduced to the max

6.2 webshell is cool because

it covers all aspects of web applications
CGI, web server extension, templates

it has unique concepts
command dispatching
multiple output buffers
paradigm of one language for all

Tcl and webshell are thread safe
therefore, webshell is ready for Apache 2.0

it is Open Source Software
you have the code

98

Netcetera AG 20

Tcl/Web

39 netcetera

VII
Q&A

� Questions?
� Comments?

99

6 tDOM

Jochen Löwer (mailto:jochen_loewer@hp.com)

mailto:jochen_loewer@hp.com

���,WP���

V&1/� ,QEJGP .QGYGT
�

<tag id=“2”>
 tDOM
</tag>

What is tDOM - (new) Features

� Tcl package for Tcl 8.x

� two XML parsers (Expat (1.95.1) + SimpleParser)

� enhanced TclExpat (SAX) (originally from Steve Ball / Scriptics)

� DOM implementation (DOM core level 1 + extensions)

� [incr Tcl] / OO - like calling syntax

� fast XPath implementation

� high performance (written in C)

� low memory consumption (enhancements)

� extension namespaces for DOM methods / XPath functions

� free for any use: MPL

� partial XSLT support

� extension system and validiation extension

� HTML parser and element builder

� more DTD information

� thread safeness

Current version: tDOM-0.52

 tDOM-0.6x in some weeks

���,WP���

V&1/� ,QEJGP .QGYGT
�

<tag id=“2”>
 tDOM
</tag>

Developers / Contributors

Jochen Loewer Core (DOM, Tcl binding, Xpath, XSLT)

Rolf Ade Extension Architecture, Validator, TclExpat enhancements,

Zoran Vasiljevic Thread Support, Node commands (Tcl Dynamic Pages)

+ various bug reporters

• email based development work

• major releases done by J.Loewer

• use SourceForge for future ? (tdom.sourceforge.net already created, but not used)

• old major site (http://sdf.lonestar.org/~loewerj/tdom.cgi) is currently down!

• Maillinglist on www.egroups.com/group/tdom

101

���,WP���

V&1/� ,QEJGP .QGYGT
�

<tag id=“2”>
 tDOM
</tag>

Related Work - Pros / Cons

 Comparision to Steve Ball’s TclDOM

Pros:

• [incr Tcl] / OO - like calling syntax (similar to Java/C++ DOM impl.)

• XPath / (XSLT) / validation

• additional methods (asXML,appendFromList,Xpointer,-keepEmpties, ...)

• high performance (written in C)

• low memory consumption

Cons:

• TclXML/TclDOM is pure Tcl implementation (runs everywhere)

• (more Tcl-like syntax)?

libxml

libxslt

tcldompro

SAXON

XT

IBM/Apache

Xerces /
Xalan

���,WP���

V&1/� ,QEJGP .QGYGT
�

<tag id=“2”>
 tDOM
</tag>

tDOM’s usage in the world

• UML modelling tool (XMI) by a danish company

• BMEcat application (Rolf Ade)

• AOLserver modules (Tcl � DOM � HTML = Tcl Dynamic Pages) Zoran Vasiljevic

• configuration the high-end server (SuperDome)

• external system communication (logistic information HTTP/XML)

• frontend to backend communication

• ? C part used in a WML system/application in Hongkong ?

…

and lots of downloads from various organizations (IBM, Compaq, SUN, Software AG,….)

102

���,WP���

V&1/� ,QEJGP .QGYGT
�

<tag id=“2”>
 tDOM
</tag>

Architecture

XPointer

 Expat

XML
Simple

 XPath
Parser and

query engine

SAX
on
Tcl

Level

TclExpat

SAX --> DOM builder

DOM

~ SAX

DOM on Tcl level

Chandler Set

HTML
Parser

XSLT

processor

Exten-
sions

like

validator

���,WP���

V&1/� ,QEJGP .QGYGT
�

<tag id=“2”>
 tDOM
</tag>

OO-like Syntax / Object Commands

tDOM creates Tcl commands on the fly while traversing the DOM tree, which
point to domNode C structuresusing their clientData:

domDoc<N> for DOM document objects

domNode<N> for all nodes (element,text,comment,PI)

Basic syntax is:

$obj method arg1 arg2 …

% set doc [dom parse $xml]
domDoc1

% set rootNode [$doc documentElement]
domNode1

% domNode2 nodeType
invalid command name "domNode2"

% set child [$rootNode firstChild]
domNode2

% domNode2 nodeType
ELEMENT_NODE

domNode2 command has not been created yet

return reference to domNode2 will create a command

No attribute, NamedNodeMap

or DocumentFragments objects !

103

���,WP���

V&1/� ,QEJGP .QGYGT
�

<tag id=“2”>
 tDOM
</tag>

Available DOM Methods for Nodes

nodeType
nodeName
nodeValue
ownerDocument

parentNode
firstChild
lastChild
nextSibling
previousSibling
hasChildNodes

childNodes

getElementsByTagname

get/setAttribute
removeAttribute
hasAttribute
attributes
@<attr>

appendChild
instertBefore
replaceChild
removeChild
cloneNode

target

data

text

find
child
descendant
ancestor
fsibling
psibling

selectNodes
xslt

asList

asXML
asHTML

toXPath

appendFormList
appendFromScript

appendXML

getLine

getColumn

navigate

handle

attribute

modify

basic

properties
PIs/text

Xpointer97
navigation
search
methods

XPath

serialize

add
fragments

optional

properties

domNode<n> method arg1 arg2 ...

XSLT

���,WP���

V&1/� ,QEJGP .QGYGT
�

<tag id=“2”>
 tDOM
</tag>

serializing the DOM parsing / DOM creation

SAX

dom parse –simple $xml

DOM

Expat
DOM
builder

XML
as string

XML
as string

$node appendXML

XML
fragment
as string

SAX

Expat
DOM
builder

$node appendFromList

Tcl list --> DOM
XML
fragment
as TclIst

dom parse –html $html

htmlsimple HTML
as string

DOM --> XML
<tag a1=”b”>
 <tag2/>
</tag>

$node asXML ?-indent 4?

DOM --> Tcl list
{tag {a1 b}
 {tag2 {} {}}
}

$node asList

DOM --> HTML <td bgcolor=”red”>
 text<p>text
</td>

$node asHTML

xmlsimple

dom parse ?-ns? $xml

$node appendFromScript

Parsing / DOM builder / Serialization

104

���,WP���

V&1/� ,QEJGP .QGYGT
�

<tag id=“2”>
 tDOM
</tag>

New I/O for Parsers / Serializers

Instead of passing/retrieving a string, a Tcl channel or filename can be used

For XML parsing / DOM building:

 $expatParserHandle parsechannel <ch>

 $expatParserHandle parsefile <f>

 $dom parse –channel <ch>

For serializers:

 $node asXML –channel <ch>

 $node asHTML –channel <ch>

Advantages:

 Avoids additional copy of data in memory

 Parse while data gets in and stop before the end

���,WP���

V&1/� ,QEJGP .QGYGT
��

<tag id=“2”>
 tDOM
</tag>

Namespace Support

While DOM building (dom parse) namespaces are parsed and stored in a per
document table.

Nodes and attribute nodes contain 8 bit index to document namespace table
(� memory savings).

New methods:
 $node namespaceURI

 $node prefix

 $localName

not (yet) implemented:
 $node getAttributeNS

 $node setAttributeNS

 $node hasAttributeNS

 $node getElementsByTagNameNS

Right now also the XML serializer doesn’t create namespace definitions

for elements/attributes (�XSLT issue)

105

���,WP���

V&1/� ,QEJGP .QGYGT
��

<tag id=“2”>
 tDOM
</tag>

DTD Information

Moved back to standard Expat distribution (1.95.1 on SF) from hacked /
improved version (by Scriptics/PerlXML/own hacks)

� gives callbacks while DTD parsing (element / attribute declarations)

Input DTD:

<?xml version="1.0" ?>

<!DOCTYPE root [

<!ELEMENT spec (front, body, back?)>

<!ELEMENT div1 (head, (p | list | note)*, div2*)>

]>

Callbacks on Tcl level:

XmlDecl 1.0 {} {}

StartDocTypeDel root NULL NULL 1

ElemDecl spec {

 SEQ {} {} {

 {NAME {} front {}}

 {NAME {} body {}}

 {NAME ? back {}}

 }

}

ElemDecl div1 {

 SEQ {} {} {

 {NAME {} head {}}

 {CHOICE * {} {

 {NAME {} p {}}

 {NAME {} list {}}

 {NAME {} note {}}

 }}

 {NAME * div2 {}}

 }

}

EndDocTypeDecl

could be useful for Validators +

Code Generators

(generate validate code,

generate object/data extraction code)

���,WP���

V&1/� ,QEJGP .QGYGT
��

<tag id=“2”>
 tDOM
</tag>

Thread Support

Initial modification for thread safeness did Zoran Vasiljevic for AOLserver integration last
year.

Basically moved global data to thread local storage.

Each thread will have his own object counter, no conflicts, no locks needed,

but no ability to share / hand over DOM documents.

To enable this Zoran made a new implementation in May/June.

There will be locks on the whole document, which are controlable via two new methods.
Document objects will be passed between threads through object names containing the
physical address (doc4f00340 � able to kill whole interpreter if bad address is used!).
There are currently discussion about a safer approach.

� Thread support should have a compile time switch, so that non-threading tDOM uses
gets no performance, robustness and complexity penalty!

106

���,WP���

V&1/� ,QEJGP .QGYGT
��

<tag id=“2”>
 tDOM
</tag>

Memory Consumption - DOM Allocator
Many memory allocators can have quite large space requirements just for

housekeeping information, usually around 8 bytes (linked list pointer + size)

DOM objects consists of many equally sized object � exploit this fact using a specialized
allocator, which has a minimal overhead in these cases.

Idea:

• use large blocks (32K) for perfect fit of equal sized objects

• use bitmap vector for used/free tracking (� 1 bit overhead)

• all blocks for object of that size go into one bin

Allocating is fine. Freeing gets complicated:

How to find the right block info structure just by the given memory address?

� Use hashing of some middle address bits and comparing against begin/end address
(cache line conecpt for 1st level CPU caches)

0100000

Bitmap Obj slots

Bin

24

0x0428000
Hash

24

-DUSE_NORMAL_ALLOCATOR

to disable it at compile time

���,WP���

V&1/� ,QEJGP .QGYGT
��

<tag id=“2”>
 tDOM
</tag>

xmlbench Performance Results
xmlbench suite (www.sosnoski.com/opensrc/xmlbench/results.html)

announced on www.xmlhack.com recently.

Test results made by Rolf this week on Win2000 (PII 333Mhz):

-Runtime(ms)- much_ado periodic xml
tdom SAX 771 591
tdom DOM 1382 1101
tdom DOM-simple 731 440 SAX: 3 times faster
Java SAX 2473 2153
Crimson DOM 13149 9294 DOM: >9 times faster
JDOM 19458 10895
dom4j 11557 8292
Xerces DOM base 14361 10856
Xerces DOM def 6429 5037
Electric XML 17886 10095

- Memory - much_ado periodic xml
tdom 332 212 284
Crimson DOM 1101 603 817 3-4 times more momery
JDOM 1545 761 1025
dom4j 1454 955 1167
Xerces DOM base 1216 685 903
Xerces DOM def 1065 738 1188
Electric XML 1367 745 1089

107

���,WP���

V&1/� ,QEJGP .QGYGT
��

<tag id=“2”>
 tDOM
</tag>

HTML parser

• based on simple XML parser

• modifications to parse HTML <= version 4.0 code

• No double quotes / ticks for attribute values

• Get script / style tag content unparsed

• Be able to deal with empty tags

 <p>
 <hr> ….

Main challenge:

To be able to deal with HTML coding errors !
 <table> <tr> <td> Row1 Col1

 <td> Row1 Col2

 <tr> <td> Row1 Col1

 <td> Row2 Col2

 </table>

 LINK

Idea: list of fields which could be autoclosed (under certain conditions)

 ignoring some closing tags, which are left over

Heuristics need improvements!

Other sites won't change just because you can't parse them.

 Advantage:

 operate on the HTML document using DOM methods,

 apply XPath queries

 future: HTML -> DOM -> XSLT/Tcl -> WML ?

 -> DoComo(?) HTML

 (Japanese mobile HTML)

���,WP���

V&1/� ,QEJGP .QGYGT
��

<tag id=“2”>
 tDOM
</tag>

Usage of HTML parser

• HTML code analysis (browse for example with XE)

• HTML code condenser (rules to strip non visible white space, then asHTML)

• wrapper to (legacy) web application

• web robots / agents

• web service interfacing (� WIDL WebMethods)

� XPath features enable easy powerful scripting in Tcl !

Example: monitor / extract offering from Ebay

108

���,WP���

V&1/� ,QEJGP .QGYGT
��

<tag id=“2”>
 tDOM
</tag>

Web Extractor (Ebay)

Information to extract

���,WP���

V&1/� ,QEJGP .QGYGT
��

<tag id=“2”>
 tDOM
</tag>

XPath Queries: Example

//country[name=‘Germany’]/province[population > 5000000]/name

 <country>
 <name>Germany</name>

 <province>

 <name>Berlin</name>

 <population>3472009</population>

 </province>

 …

 <province>

 <name>Bayern</name>

 <population>11921944</population>

 </province>

 …

 </country>

Predicate / Subfilterall descendant
element nodes

filter all elements
with nodeName ‘country’

get all child nodes implicit convert of text nodes
below ‘population’ tag into numbers

//mountain[in_country[@ref = string(//country[name='Germany']/@id]]

‘Join’ over reference id values out of different parts in the XML:

109

���,WP���

V&1/� ,QEJGP .QGYGT
��

<tag id=“2”>
 tDOM
</tag>

Web Extractor (Ebay) – XPath extract code

set doc [dom parse -html $xml]

set root [$doc documentElement]

foreach item [$root selectNodes {//a[contains(@href,"item=")]/ancestor::tr }] {

 set object [$item selectNodes { string(td[2]) }]

 set price [$item selectNodes { string(td[3]) }]

 set bids [$item selectNodes { string(td[4]) }]

 set endtime [$item selectNodes { string(td[5]) }]

}

set gebot [$root selectNodes { string(//*[contains(.,'Aktuelles Gebot')]

 /following-sibling::td[1])}]

set startpreis [$root selectNodes { string(//*[contains(.,'Startpreis')]

 /following-sibling::td[1])}]

set description [$root selectNodes { string(//blockquote[1])}]

down to object up start of row

next column to the right

���,WP���

V&1/� ,QEJGP .QGYGT
��

<tag id=“2”>
 tDOM
</tag>

Web Extractor (Ebay) – XE examples 1

110

���,WP���

V&1/� ,QEJGP .QGYGT
��

<tag id=“2”>
 tDOM
</tag>

Web Extractor (Ebay) – XE examples 2

���,WP���

V&1/� ,QEJGP .QGYGT
��

<tag id=“2”>
 tDOM
</tag>

Handler Sets for Expat / Stacked tDOM

For DOM building the Expat callbacks (SAX events) are tight to the DOM object creation functions.

Why not having having the SAX events trigger other actions (element statistics, validation, …)

beside the standard DOM builder in parallel?

Having a subsequent parse to accomplish that is not a very clever alternative!

Idea:

 Extent Expat to be able to invoke multiple callbacks for an event � CHandlerSets

CHandlerSets provide a stackable modular extension mechanism,

which allows to write extensions separate from the main tDOM distribution

developed by Rolf Ade

Expat
elementStartCommand

CHandlerSet

elementStartCommand

elementStartCommand

SAX handler (counting, validation, …)

DOM builder

111

���,WP���

V&1/� ,QEJGP .QGYGT
��

<tag id=“2”>
 tDOM
</tag>

tnc Extension: DTD based validation

The tnc extension package uses the CHandlerSets and allows fast C speed

DTD based validation while building up the DOM tree at the same time.

package require tdom

package require tnc

roc LoadAndValidate { xml } {

 set parser [expat]

 tnc $parser enable

 tdom $parser enable

 $parser parse $xml

 set doc [tdom $parser getdoc]

 puts [[$doc documentElement] asXML]

 $parser free

 return $doc

}

LoadAndValidate {<?xml version="1.0"?>

 <!DOCTYPE Test [<!ELEMENT Test (#PCDATA) >]><Test></Test>}

LoadAndValidate {<?xml version="1.0"?>

 <!DOCTYPE Test [<!ELEMENT Test (#PCDATA) >]><TestFoo></TestFoo>}

developed by Rolf Ade

���,WP���

V&1/� ,QEJGP .QGYGT
��

<tag id=“2”>
 tDOM
</tag>

NodeCmd

Fast C implementation for DOM node creation, which could nest.

Example:

 % dom createNodeCmd elementNode html::body

 % dom createNodeCmd elementNode html::title

 % dom createNodeCmd textNode html::t

And usage:

 % set d [dom createDocument html]

 % set n [$d documentElement]

 % $n appendFromScript {

 html::body {

 html::title { html::t "This is an example“ }

 }

 % puts [$n asHTML]
 <html>
 <body>
 <title>This is an example</title>
 </body>
 </html>

This is the foundation for Zoran tdomtdp package for AOLserver: Tcl Dynamic Pages

developed by Zoran Vasiljevic

112

���,WP���

V&1/� ,QEJGP .QGYGT
��

<tag id=“2”>
 tDOM
</tag>

Tcl Dynamic Pages - Examples

Example:

body {
 #
 # Server info
 #
 h2 {t "Server Information"}
 blockquote {
 table {
 foreach item {
 server hostname address pid uptime boottime home config log
 pageroot tcllib nsd argv0 name version label builddate platform
 } {
 tr {
 td -align right -valign top {b {t "$item: "}}
 set itemval [ns_info $item]
 if {$item == "boottime"} {
 set itemval [ns_httptime $itemval]
 }
 td -align left -valign top {t "$itemval\\ "}
 }
 }
 }
 }
}

developed by Zoran Vasiljevic

similar to Don Libes’ cgi.tcl approach, but builds DOM
tree fragments (in C).

At the end the DOM tree is serialized with [$root asHTML]

���,WP���

V&1/� ,QEJGP .QGYGT
��

<tag id=“2”>
 tDOM
</tag>

XSLT processor (in C)

Right now there is no directly Tcl embedded XSLT engine available (Steve Ball did
some wrapper to XT/SAXON/... outside as a process)

Implementation started end of July 2000, most code done until October.
Got final approval to also release it as Open Source in December.
Currently ~ 70 KByte C code and a new code in domxpath (LocationPath matcher)
(obj code: 55K for XPATH, 26K for XSLT)

Problem: A lot of templates have to be checked in parallel

 <xsl:template match=“book/author”>
 …
 </xsl:template>
 <xsl:template match=“book/title”>
 …
 </xsl:template>

match contains LocationPath and not XPath expressions. So current
XPath implementation doesn’t help much and evaluates for the
current node downwards.
� new LocationPath parser had to be coded
� bottom-up match approach

IsElement author

ToParent

IsElement book

AxisChild book

AxisChild author

Eval XPathExpr LocPathMatches(node)

113

���,WP���

V&1/� ,QEJGP .QGYGT
��

<tag id=“2”>
 tDOM
</tag>

XSLT processor (in C) – Usage

$root xslt $xsltDoc transformedDoc <-- change to document method

proc ApplyTemplate { xml xslt } {
 dom parse -keepEmpties $xml xmlDoc
 dom parse -keepEmpties $xslt xsltDoc
 [$xmlDoc documentElement] xslt $xsltDoc transformedDoc
 # depending on the output type
 [$transformedDoc documentElement] asXML
 [$transformedDoc documentElement] asHTML
}

���,WP���

V&1/� ,QEJGP .QGYGT
��

<tag id=“2”>
 tDOM
</tag>

XSLT processor (in C) – Current State
Other work / competitors:
 C: libxml/libxslt from D.Veillard (GNOME)
 C++: Sabletron
 Java: XT James Clark
 Saxon
 Xalan (IBM -> Apache XML project)

currently already passed:
 Mozilla XSLT engine tests
 a great part of tests from LibXML/LibXSLT (GNOME, D. Veillard)
 some other XSLT test from various sources
 some of M.Kay's tests
 Joe English TMML Tcl man page formatter does not work completely (key/import is missing)

current problems:
 - document fragments for xslt:variables / XPath expression
 - xslt:number, xslt:sort, … partial implemented
 - function format-number (Tcl based implementation initially preferred)
 - missing:
 - element creation with namespaces
 - output type determination and handling (only text, may need asText)
 - xslt:key
 - xslt:import / xslt:include / xslt:apply-import

� not usable in production code, if all features are needed!

114

���,WP���

V&1/� ,QEJGP .QGYGT
��

<tag id=“2”>
 tDOM
</tag>

XPath / XSLT extension functions in Tcl

If function is not found in Xpath / XSLT processing, a callback can try look for a Tcl-level
implementation:

proc ::dom::xpathFunc::format-number { ctxNode pos nodeListType nodeList args } {

 set argLen [llength $args]

 if { ($argLen != 4) && ($argLen != 6) } {

 return -code error "wrong number of args: format-number(node,typeString,?decFormat?)”

 }

 foreach { arg1Typ arg1Value arg2Typ arg2Value } $args break

 set num [::dom::xpathFuncHelper::coerce2number $arg1Typ $arg1Value]

 set formatStr [::dom::xpathFuncHelper::coerce2string $arg2Typ $arg2Value]

 ...

 return [list string $num]

}

Good way to get something implemented and working first on Tcl level.
Later recode in C can be made, if performance matters.

���,WP���

V&1/� ,QEJGP .QGYGT
��

<tag id=“2”>
 tDOM
</tag>

Future / Enhancements

• finalize thread support

• xslt bugs fixes and enhancements

• namespace enhancement (c level creation functions, tcl level methods, namespace
support in XML serializer)

• release tDOM-0.6x soon.

• PURL for tDOM / sourceforge (?)

• XML schema validation

• SOAP client/server

• UDDI ?

• new XML Query proposal by W3C (Software AG,...)

 Poll:

 What do want to have?

 Use of XML or XML-based RPC technics (SOAP) in future projects?

115

���,WP���

V&1/� ,QEJGP .QGYGT
��

<tag id=“2”>
 tDOM
</tag>

Thanks

• Thanks for interest

• Call for help / volunteers / testers / users.

• Questions?

116

7 Game Scripting with Tcl

Carsten Orthbandt (mailto:carsten.orthbandt@sek-ost.de)
Director Development
SEK-Ost (http://www.sek-ost.de)

mailto:carsten.orthbandt@sek-ost.de
http://www.sek-ost.de

Game Scripting with Tcl
Carsten Orthbandt
Director Development
SEK-Ost
mailto:carsten.orthbandt@sek-ost.de
http://www.sek-ost.de

SEK.Ost is a German game development company. For our current project “Wiggles”, we
decided to employ a scripting system to make content creation easier and faster. Going with
Tcl was a key factor in realizing our concept.

1 Wiggles
Wiggles is a 3D realtime strategy game with strong emphasis on
character development. You command a bunch of gnomes, each
having its own mind and abilities. Though the game starts at the
surface you quickly begin to dig tunnels and caves.
While the player has direct control over each of the gnomes, they are
able to perform most tasks automatically.
Wiggles runs on Microsoft Windows computers with DirectX.

2 Scripting game content
The complexity of current computer games enforces new techniques for content creation.
While most games use core engines written in C++, level design and game logic are usually
implemented with scripting languages and specialized design tools.
Graphical level editors are great tools for manipulating objects in your game world but
defining complex behaviours through a GUI makes maintenance a very time consuming tasks.
This is where scripting languages come in and save the day.
Game development is a rather chaotic process where standard methods of software
engineering are only partly adopted or simply do not work at all. There are many scripting
languages in use today and developers are constantly reinventing the wheel.

2.1 Requirements for games
The ideal language for game content
creation has to meet several goals at once.

2.1.1 High performance
With constantly rising levels of graphics
detail and game depth, simulation and
game logic must be fast. Current games
show hundreds or thousands of objects
each being rendered and simulated.
Memory consumption and execution speed
are key factors.

118

2.1.2 Ease of use
Most game designers are not programmers,
they don’t need complex languages but
productivity. Game content design requires a
language that is easy to learn and teach. Error
messages should be clear. Scripting must
never cause protection faults or other system
errors.

2.1.3 Expandability
Structures for interactive content often do not
translate well into given language constructs.
A scripting language should provide methods
to extend its syntax. Most games have their
own system abstraction layer that is not reflected by standard scripting languages. Therefore
scripting integration with the game core systems should be lightweight and easy to
implement.

3 Tcl the Wiggles way
At SEK.Ost, Tcl has proven to be a valuable tool not only for direct game control but also for
workflow tools in the production process. We built a wrapper module to simplify Tcl access
from C++. This wrapper is used everywhere in our code and has some special features to
solve some real life problems we had.
All Tcl applications at our site are embedded Tcl. Nobody runs tclsh. Every tool embeds and
extends Tcl as a standalone application. Since we cannot rely on a Tcl installation on the
customers computer we do not use Tcl DLLs but link statically.

3.1 Wiggles game objects
Every game object in Wiggles has a number of attributes like position, rotation, velocity and
animation status. Simple behaviours are performed through actions, which are the basic
building blocks for more complex tasks defined through Tcl scripts.
For every object there is a Tcl class that defines states, methods and event handlers. The core
C++ engine provides commands for handling objects, classes and independent game data.
Apart from that all game rules are defined by Tcl scripts.

119

3.2 Tcl_Obj wrapper class
The core of our wrapper are two C++ classes that encapsulate Tcl objects and interpreters.
This is our CTclObj definition:

class CTclObj
{

Tcl_Obj* m_pO;
public:

CTclObj();
~CTclObj();

CTclObj(Tcl_Obj* pOrg);
CTclObj(const CTclObj& org);
explicit CTclObj(const char* pcText);
explicit CTclObj(const int iValue);
explicit CTclObj(const double dValue);
explicit CTclObj(const CVec3D& vVector);
explicit CTclObj(const bool bValue);

CTclObj& operator=(const CTclObj& org);
CTclObj& operator=(Tcl_Obj* pOrg);
bool operator==(Tcl_Obj* pOrg) const;
operator Tcl_Obj*() const;

int GetInt() const;
double GetDouble() const;
float GetFloat() const;
const char* GetString() const;
CVec3D GetVector() const;
bool GetBool() const;

bool CvtToInt(int& i) const;
bool CvtToDouble(double& d) const;
bool CvtToFloat(float& f) const;
bool CvtToVector(CVec3D& v) const;
bool CvtToBool(bool& b) const;

bool ListAdd(const CTclObj& toElem);
int ListLength();
CTclObj ListGet(int iIndex);
CTclObj ListRemove(int iIndex);
CTclObj ListReplace(int iIndex,CTclObj toNew);
static CTclObj ListCreate();

CTclObj Duplicate();

static CTclObj FromFile(const char* pcFilename,bool bStripCPPComments=true);
static CTclObj FromFileNoCache(const char* pcFilename,bool bStripCPPComments=true);

static void EnableCache();
static void DisableCache();
static void FlushCache();
static void GetCacheRates(int& iHits,int& iMisses);
void DoAutoArc(AutoArc& arc);

static void PreProcReset();
static void PreProcDefine(const char* pcDefine);
static void PreProcUndefine(const char* pcDefine);
static bool PreProcIsDefined(const char* pcDefine);

};

Most of these methods translate forward to the Tcl API, but there are some notable extensions
to the usual Tcl functionality.

120

3.2.1 Pre-processing
There is no doubt the normal Tcl comment (#) is not strictly intuitive to use. After some
entertaining problems with the hash comment, we decided to provide a different mechanism
for comments. We simply copied the C++ line comment (//):

proc test {} {
for {set i 0} {$i<10} {incr i} {

// this comment works ! {
puts $i // this one does not

}
}

This new comment is only valid at the start of a line, ignoring whitespace. Obviously this
requires some pre-processing for all scripts. This is accomplished through the FromFile*
methods. These methods replace the Tcl source command functionality. We decided not to
redefine any Tcl core commands and provide a new command “call” that goes through this
pre-processing.
When developing a game, you have to produce demo versions frequently. For space and
security reasons, these demos have to be crippled. Since maintaining content for two different
versions (demo and full) consistently is next to impossible, we extended our pre-processor
further to allow #define-like parsing.

//# IF FULL
set info "[lmsg Language] Full version"
//# ELSE
set info "[lmsg Language] Demo version"
//# ENDIF

Though this is neither very elegant or “Tclish”, it has proven to be a powerful feature.
The full set of pre-processor commands is show below:
//#define <id>

Sets the switch <id>.
//#undef <id>

Unsets switch <id>.
//#stopif <id>

Stops parsing of file if <id> is defined.
//#stopifnot <id>

Stops parsing of file if <id> is not defined.
//#if <id>
//#ifnot <id>
//#else
//#endif

C-like conditional inclusion of Tcl source. Can be nested.

When building a demo version we strip the unwanted content by simply loading the scripts
and saving them back to the demo location. The resulting demo script files do not contain any
comments or pre-processor statements since these were filtered on loading.

3.2.2 Bytecode cache
Every created object in the game calls a class script, which in turn may call several other
shared scripts. We found that loading and compiling these scripts on every object creation
causes a significant performance hit. To circumvent reloading and compiling of otherwise
constant scripts, we added a cache that keeps all loaded scripts in memory and returns the pre-
processed and (if it was evaluated before) compiled Tcl object on successive requests for the
same file. Although there are more than 250 script files for object class definitions in our
game, the cache is very efficient. Typically the cache hit rate is well above 80% just after
game startup and >99% after a few minutes.

121

The cache can be flushed through CTclObj::FlushCache(), or completely disabled.

3.3 Tcl_Interp wrapper class
class CTclInterp
{

Tcl_Interp* m_pI;
bool m_bOwn;

// when this use counter goes Zero, Tcl_Exit(0) is called
static long g_iUseCounter;
CTclInterp& operator=(const CTclInterp& ipOrg){return *this;};
CTclInterp(const CTclInterp& ipOrg){};

public:
CTclInterp();
~CTclInterp();

// create an interpreter
void Init();
void Shut();

bool Initialized() {return m_pI!=NULL;};
operator Tcl_Interp*() const;

void SetUserData(const KStr& sKey,ClientData pData);
ClientData GetUserData(const KStr& sKey);

CTclInterp(Tcl_Interp* pInterp);
CTclInterp& operator=(Tcl_Interp* pInterp);

KStr m_sError;
KStr m_sErrorShort;

bool SetVar(const CTclObj& sVarName,const CTclObj& sVarValue);
CTclObj GetVar(const CTclObj& sVarName);
bool UnsetVar(const KStr& sVarName);
bool SetArrayVar(const CTclObj& sVarName,const CTclObj& sKey,

const CTclObj& sVarValue);
CTclObj GetArrayVar(const CTclObj& sVarName,const CTclObj& sKey);
bool UnsetArrayVar(const KStr& sVarName,const KStr& sKey);

bool Eval(const CTclObj& oScript);
CTclObj GetResult();
CTclObj EvalExpr(const CTclObj& oExpr);
bool EvalExprBool(const CTclObj& oExpr);
bool EvalScope(const CTclObj& oScript);
bool EvalScope(const CTclObj& oScript,CTclObj& toParamNames,CTclObj& toParamVals);

void AddCmd(const KStr& sCmdName,Tcl_ObjCmdProc* pProc,ClientData cd);
void AddCmdList(const CTclCmdList& cmdList,ClientData cd);
void RemCmd(const KStr& sCmdName);

void SetResult(CTclObj& toResult);
void SetError(const char* pcReason,const CTclObj toOffendingObj=0);
void SetTypeError(const CTclObj toOffendingObj=0);
void SetArgCountError(int iNeededArgs);

bool DefineProc(const char* pcProcName,const CTclObj& toArgs,const CTclObj& toBody);
bool ProcExists(const char* pcProcName);
bool CallProc(const char* pcProcName,CTclObj& toArgs);

};

Again, most of this class mirrors the Tcl API closely. We added extended error information
that simplifies error location in script files. To simplify creation of special language
structures, we also added methods for handling procs from the C++ level.

122

3.4 Tcl usage in Wiggles

3.4.1 Class properties
There are many object types with differing complexity. These range from
simple decoration objects to the gnomes with dozens of event handlers,
methods and attributes.
Object behaviour in Wiggles is defined through its “class”. When a new
object is created, it creates an independent Tcl interpreter that runs object
initialisation according to the class definition.
Object classes define:

- variable initialisation values
- public object methods
- event handlers
- state handlers
- appearance defaults

Because every active game object runs its own interpreter, there has to be
a way to let objects communicate. This is done through methods and
events.
Methods work like normal procedures, but can be called across interpreter boundaries.
Methods may return values, but most do not. When running a networked game, method calls
may transform into remote procedure calls on some other computer.
This is a typical method, taken from the “Troll” class.
method burn {} {

if { $burning } { return }
set burning 1
add_attrib this atr_Hitpoints -1.2
action this anim burn {state_enable this} {state_enable this}
change_particlesource this 0 27 {0 0 0} {0 0 0} 256 16 0 0 0 1
set_particlesource this 0 1

}

Events can be fired by the core C++ engine or other objects. We define a global list of event
types that each object may handle. If a class should handle some event, it defines a handler:
handle_event evt_task_defend {

tasklist_clear this
set attack_item [event_get this -subject1]
set attack_behaviour "offensive"
set approach 0
fight_startfight

}

States are a simplified form of finite state machines. Each object has one active state. State
processing can be disabled and enabled. A common pattern is:

- receive event
- start action
- disable current state
- core engine executes action
- action finishes
- re-enable object state

Actions are basic behaviours provided by the core C++ engine. These actions include
animation, walking and simple sleeping. When starting an action, the script specifies two Tcl
snippets that are executed when the action finishes. There is one “finish handler” for
successive action termination and one handler for termination due to errors:
action this anim burn {state_enable this} {state_enable this}

123

All commands on objects take an object reference as the first parameter. These references
may be a simple ID of an object or the special “this” reference for the object that owns the
interpreter the script is running in.

3.4.2 Custom commands
There are over 600 custom commands in Wiggles, 300 of them being object bound.
As an example I’ll describe the set_attrib command:

//@TCL set_attrib <objref> <attribname> <value>@attrib@ set new attribute value
int CTclObjMethods::SetAttrib(ClientData cd,Tcl_Interp* pI,int iObjc,Tcl_Obj* const vObj_[])
{

TCLTRACE("CTclObjMethods::SetAttrib()");
CTclObjInterp ip(pI);
CTclVarArgs vObj(iObjc,vObj_);
CObjPtr pObj=GetObjSafe(pI,iObjc,vObj_,4);
if(!pObj){return TCL_WARNING;};
CTclObj toAttr(vObj[2]);
CTclObj toValue(vObj[3]);
pObj->m_Attrib.Set(toAttr.GetString(),(float)toValue.GetFloat());
ip.SetResult(CTclObj(pObj->m_Attrib.Get(toAttr.GetString())));
return TCL_OK;

};

The first line is a special comment for documentation. We built a tool that scans through the
C++ sources and creates HTML documentation from these comments.
TCLTRACE() is a macro that enables performance profiling of Tcl custom commands in debug
builds. We use this information to find hot spots and time critical functions.
Each custom command uses the given interpreter through a wrapper (CTclObjInterp) that
provides enhanced evaluation methods for profiling and error tracking.
CTclVarArgs wraps the arguments in a safe array that is bounds checked in debug builds. The
object reference in parameter 1 is converted to a pointer and checked for validity. This
conversion also checks the parameter count and sets the interpreter error if it does not match.
The other parameters are then used to actually set the attribute value and the interpreter return
object.

3.4.3 Performance considerations
The memory overhead of having one interpreter per game object is fairly high (~35 kByte).
With thousands of game objects we had to find a way to reduce memory usage.
Since most object are for decoration, they do not have any handlers or methods. The runtime
detects classes that only need object initialisation and creates these objects without an
interpreter using the defaults given on class definition. These “dumb” objects can still be
accessed from other (active) objects through their Tcl commands, but may not execute any
Tcl code.
Each execution of custom commands, states, events or methods is tracked for statistics. These
statistics are dumped to a text file after program termination. From this we can find slow Tcl
code or custom commands that are good candidates for optimisation.
Most non-trivial handlers have their real code moved to procs for better bytecode
optimisation.

3.5 Localisation
All user-visible text is held in language-dependent files and retrieved through a custom
command “lmsg” that returns the translated version from a hash table. This technique is also
used for texts in the core engine.

124

3.6 In-game shell and web server
For testing and development we included a simple shell in the game. Every action in the game
can be triggered through commands in the shell. This shell is also accessible through an
integrated web server for remote troubleshooting. These two tools provide lots of information
on game state and means to perform actions that are not possible with the official user
interface.

3.7 Limitations
Wiggles does not support console I/O because there is no shell window. There is no support
for packages or extensions not provided by the hosting application. There is no trace of the
standard Tcl distribution in our game. Therefore much Tcl standard stuff does not work in our
game.

4 Things we didn’t do
There are a few things we could have done
but decided against. Some simply didn’t
work, others were to slow.

4.1 [incr Tcl] OOP
Although there is an object class concept in
Wiggles, there is no inheritance. This
reduces the requirements for a Tcl OOP
system drastically. When we had a look at
[incr Tcl], we found it quite powerful but
also far more advanced than “naked” Tcl.
There was no convenient way of interaction
between the core C++ engine and iTcl
defined class objects. It seems not to be
designed to be embedded.

4.2 Custom object types
Handling C++ object references in Tcl was one of the bigger challenges. Objects might be
deleted while a script still has a reference. We considered building a custom type for smart
object pointers, but it did not work out. We would have needed much more control over
lifetime of custom type internal representations.

4.3 Tcl scripted user interface
The user interface of Wiggles is completely written in C++. We tried to keep the interface
very simple. Although Tk shows that Tcl works well for interfaces, computer games tend to
constantly break the rules of interface design. Therefore we’d had to implement completely
new UI functionality for Tcl.

4.4 SWIG wrapper generation
SWIG does a great job of generating Tcl integration for C code. But most C++ methods of the
core engine are rather low-level and not suited for Tcl commands. The set_attrib command
show above is the probably most simple function in Wiggles. The majority of custom
commands uses sequences of C++ methods to perform higher-level tasks. Therefore

125

automatic wrapper generation did not help with the functions that actually take the most time
to write.

5 Things we might do on our next project
Wiggles was our first big-scale use of Tcl and we gained much experience. Naturally, there
are many things we would do very differently if started the project today. For our next project,
we are considering some changes.

5.1 Lightweight Tcl
The Tcl core is very efficient but also very big. We do not use events, channels, sockets or
regular expressions. We’d like to remove these and other features from the Tcl core to make it
less memory hungry. This showed to be anything but trivial. After removing all core
commands we do not need, the library was only 16 kBytes smaller. Some of those features are
very tightly integrated with the interpreter. There is much room for improvement.

5.2 Reimplementing Tcl
It might be simpler to do a complete rewrite of Tcl than to strip the unwanted features. There
are things we’d like to do totally different, among them being the management of custom
types (see 4.2) and the possibility of opaque types.
A complete rewrite would take much time and will probably be less efficient. But it seems
very difficult to customize the existing core to fit our needs.

5.3 Tcl build tools
We are considering using Tcl as a sort of “make” tool. The tmk project is very promising but
far from being usable on Windows platforms. It might be practical to implement the subset we
would use.

5.4 Binary scripts
For performance and security reasons we’d like to store the game scripts in compiled binary
format. Wiggles stores scripts as excrypted text files.

6 The end
Scripting as means of content creation is widely used in the computer games industry. Being
only one of many current approaches, Tcl showed to be just the right thing for Wiggles.

7 References & Links
Wiggles Homepage
www.wiggles.de
www.wiggles.org

126

8 Generating test programs with TestMake

Arjen Markus (mailto:Arjen.Markus@wldelft.nl)
1 WL | Delft Hydraulics

mailto:Arjen.Markus@wldelft.nl

Second European Tcl/Tk User Meeting, June 7-8 2001, TU Hamburg-Harburg

Generating test programs with TestMake

Arjen Markus1

WL | Delft Hydraulics
PO Box 177

2600 MH Delft
The Netherlands

Abstract
Three aspects of Tcl make it a very suitable scripting language for generating
(test) programs in, say, Java or FORTRAN 90: its abilities to manipulate long
strings or text fragments, its support for associative arrays and the ease with
which data can be interpreted as Tcl code. This way, parsing input data is
almost trivial.

The application described here exploits these features to generate test
programs. The user identifies a piece of code, one or several subroutines for
instance or the source code for a whole class that need testing in some isolated
environment. The input, as far as the user is concerned, mainly consists of:
• The declarations of input or output variables, possibly with a suitable test

to see if the code under test does its job.
• A set of test cases which exercise the code.

It is then the task for the application to generate a complete program from
these specifications.

The advantages of this approach are that one is concerned only with the
formulation of the test cases (with the help of static analysers even that may be
automated to a certain extent) and the evaluation of the results. The details of
the program that should run all these tests are taken care of by the general Tcl
script.

Introduction
This paper describes a Tcl application that builds (test) programs from straightforward
specifications. The idea for creating an application that would generate a complete test program
based on some fragments of code developed slowly:
• First of all, Tcl comes with an extensive facility to build and execute test suites. This,

however, requires one to specify the outcome of a test as a single string, whereas the results
of a (FORTRAN) routine might be an array of real values that can be checked against
some criterion.

• Second, building test programs is repetitious and tedious. It means, implementing a series
of tests where you have to specify all code to check the result and report about it as well as
making sure that all tests are run in the correct way.

• Third, some analysis tools are capable of reporting the conditions by which the flow of
control would follow a certain path through the code (see figure 1; ref 1.). This is valuable
information when examining the code interactively, but it could be used for generating test
cases as well.

1 E-mail address: arjen.markus@wldelft.nl

128

• The fourth and last source of inspiration was a paper on testing the implementation of
POSIX routines on a variety of machines (ref. 2.) In this work, fragments of code were
used to construct an almost exhaustive set of test programs by which the various error
conditions of a POSIX routine could exercised.

Figure 1. Example of a test path, as generated by a static analysis tool.

A typical situation
To make the idea less abstract, let us examine an example more closely, a hypothetical program
that analyses measurement data. Such a program, written in the language of your choice, will
have to perform a number of tasks like:
• Gather the input data
• Do the actual analysis
• Report the results

Hence, a coherent part of the program could be a single routine or a set of routines that
determine simple statistical parameters (the mean, the extremes, the standard deviation). Such
coherent parts can be tested more or less in isolation and that is what TestMake tries to
facilitate. The routine below in FORTRAN 90 is one implementation:2

subroutine vstat(values, vmean ,vmin, vmax, vstd)
 implicit none
 real, dimension(:), intent(in) :: values
 real, intent(out) :: vmean, vmin, vmax, vstd

 integer :: i
 integer :: novalues
 real, parameter :: vmiss = -999.0

2 For the sake of brievety all comments have been stripped. There is also no claim to good
programming practice.

129

 novalues = size(values)

 vstd = vmiss
 if (novalues == 0) then
 vmean = vmiss
 vmin = vmiss
 vmax = vmiss
 else
 vmean = sum(values) / novalues
 vmin = minval(values)
 vmax = maxval(values)
 if (novalues >= 2) then
 vstd = sum(values**2) - vmean ** 2 * novalues
 vstd = sqrt(vstd / (novalues - 1))
 endif
 endif

 return
end subroutine vstat

The Java class that follows has the same functionality, although it requires quite a different call
sequence:

import java.lang.* ;
import java.math.* ;

public class vstat {
 public final float missing_value = -999.0f ;
 private int novalues ;
 private float vsum ;
 private float vsum2 ;
 private float vmin ;
 private float vmax ;

 public vstat() {
 restart();
 }
 public void add(float value) {
 novalues ++ ;
 vsum += value ;
 vsum2 += value*value ;
 if (value > vmax) vmax = value ;
 if (value < vmin) vmin = value ;
 }
 public void restart() {
 novalues = 0 ;
 vsum = 0.0f ;
 vsum2 = 0.0f ;
 vmax = -Float.MAX_VALUE ;
 vmin = Float.MAX_VALUE ;
 }
 public float average() {
 return (novalues>0)? vsum / (float)novalues : missing_value ;
 }
 public float stdev() {
 float stdv ;
 if (novalues > 1) {
 stdv = (vsum2 - vsum * vsum / (float) novalues) / (float) (novalues-1) ;
 stdv = (float) Math.sqrt((double) stdv) ;
 } else {
 stdv = missing_value ;
 }
 return stdv ;
 }
 public float min() {
 return (novalues>0)? vmin : missing_value ;
 }
 public float max() {
 return (novalues>0)? vmax : missing_value ;
 }
} // End of class

Inspection of the tasks these modules (the term used in TestMake, for lack of anything better
and less worn out) perform, reveals a number of test criteria:

130

• The mean and extreme values can be ordered as: minimum ≤ mean ≤ maximum, unless
there are no values.

• The standard deviation must be non-negative (otherwise there will be a domain error when
the square root is evaluated).

• The statistical parameters can only be determined if there are enough values. Otherwise
this must be marked by, say, a reserved value like -999.0.

The modules can be tested with test cases such as:
1. There are no data
2. There is only one value
3. There are two or more different values
4. There are only two measurement data with the same value (which means the standard

deviation should be zero!)
5. Other test cases whose expected outcome is easily determined.

With every test case you will want to check the above criteria and perhaps some specific
additional conditions as well.

Set-up of the application

The user’s perspective
Of course, the application grew more or less organically, rather than from a deliberate design.
Nonetheless, we can formulate a number of requirements, based on the likely users. We can not
trust formal descriptions to be present and therefore can not rely on a full automation of the
task (see below). We can however assume that any programmer who takes the job of testing
seriously, can formulate a set of test cases and appropriate test criteria - whether these are
sufficient or even suitable, is another matter. A programmer will want to test a reasonably sized
part of the whole program, because otherwise formulating the test cases becomes a horrific job.
Formulating the test cases and implementing them in a program should be easy to do.

The table below describes these requirements and others in some detail:

Requirement Rationale
Test a reasonably sized part, not just
the whole program

Large programs require a large set of test cases.
Errors in the program will be difficult to trace because so
much code is involved.

Concentrate on the specifications, not
on the details of the test program

The test program’s details are tedious and lead to errors.
Small, clear test specifications reduce the work and the
chance for errors.

Conclusions must be clear-cut The test should either fail (with an indication of what
criterion was violated) or succeed. Inconclusive tests are
confusing.

Creating the program text should be
automated and foolproof

Syntax and other errors in the user-supplied code are
acceptable, but the generated code should be error-free.

The specifications should be regarded
as data

If the programmer has to program the test cases and other
information, chances are that he/she makes mistakes. The
specifications should be as “data-like” as possible.

131

Design considerations
A good static analyser is capable of identifying the potential paths of control through the source
code and generating a report of which conditions should be met. It is, however, not possible to
derive the test criteria from this analysis. Consider the following, almost trivial, fragment in C:

void Increase(int *value)
{

(*value) -- ;
return ;

}

Judging from the name of the function one would suspect that the decrement ought to be an
increment of the variable. But as long as there is no more or less formal description of this
function that can be examined by some computer program, we will have to rely on our
judgement.

Therefore the input for the TestMake application consists of a number of user-supplied code
fragments that pieced together to form a complete program. The glue for this is provided by a
standardised library of fragments, so that the user only has to specify the code that implements
a particular test case and subsequently tests the results.

TestMake does provide some trivial but important automatic checks. As each parameter that
is visible from outside the source code under test, is characterised as input or output in various
flavours, the criteria below can be formulated:
• Input parameters:
 Their value must not be changed as a result of invoking the code under test. To test this, a

copy is made of their value just before the tested code is run and this copy is compared to
the value upon return.

• Output parameters:
 Their value must be changed, unless an error condition has been detected by the tested

code. Testing that the value has indeed changed can be done in a similar way as for the
input parameters, but their initial value must be set to something that is unlikely to be the
result of exercising the tested code.

• Input/output parameters:
 Some parameters will be updated by the code under test. Thus, they are essentially like

output parameters and are treated this way by the automatic testing procedure.
• Error parameters:
 It is assumed that an error condition has occurred whenever this type of parameter is set to

a different value by the code under test. A correct detection of an error may be part of the
test case, so this fact is simply reported and the automatic tests are influenced as indicated
above.

In addition to these automatic criteria, the user will want to apply more specific tests. This can
be done in two ways:
• As part of the definition of an output parameter
• As part of the definition of a test case

Skeleton code
To generate a full working program, a simple but effective approach is taken in TestMake:
• The user supplies the specific pieces of code, such as the declaration of a variable to be

watched and the code for the test cases that are to be run.
• A library of small code fragments and auxiliary routines is used as a “glue” for all those

pieces.

132

This way the test program always has the same structure:

Main program:
 (Program header)
 Headers
 Declarations of input, output and other parameters
 Additional declarations

 Preparation

 Repeat for all test cases:
 Call initialisation
 Set up the conditions for the test case
 Call the module
 Call the check routine
 Report the conclusions

 End of main program

Subroutine to initialise:
 Initialise all parameters
 Initialisation fragment

Subroutine to call the module:
 Call fragment

Subroutine to check the output:
 Repeat for each parameter:
 Generic check code
 Specific check code (if given)
 Report conclusion: test failed or not

By applying a different library (and perhaps redefining a few of the steps) one can generate
programs in various languages.

In TestMake a whole set of small fragments is distinguished, so that it will not be necessary to
redefine the above sequence for each and every language, though the implementation does
assume that the programming language (or scripting language) allows for subroutines or
methods and for multiple scopes of variables.

Let us examine one item in the construction of the final program more closely, the specification
of an output variable. The user will have to supply the name and the type, an initial value (so
as to detect the change as a result of the test case), and possibly a check on the resulting value.
To take up the example again, the standard deviation might be defined as:

Output ”vstd” ”real” {
vstd = -1.0 ! Should always be missing value, zero or positive

} {
call test_failed(.not. (vstd .ge. 0.0 .or. vstd .eq. amiss),

&
"Standard deviation negative")

}

In the generated program, this information is used to:
• Declare the variable and a copy of that variable:

real :: vstd
real :: out__vstd

• Initialise the variable (and its copy) just before the code under test:

vstd = -1.0 ! In subroutine INITIALISE

133

out__vstd = vstd ! In subroutine RUN_MODULE

• Check for the changes in the value as a result of the code under test:

if (test_equals(vstd, out__vstd)) then
 write(test__lun, *) "Output parameter vstd has NOT changed!"
 test__output = .false.
endif

• Check the value with the user-supplied code fragment:

call test_failed(.not. (vstd .ge. 0.0 .or. vstd .eq. amiss), &
 "Standard deviation negative")

In a similar way, all other types of variables to be watched are treated and all code that
prepares for the test cases is assembled.

Implementation in Tcl
As stressed in the requirements, the input, as far as the user is concerned, should look like data
as much as possible. This can be achieved by defining the appropriate Tcl procedures. A bonus
of this approach is that the user does not have to know Tcl and the implementation does not
have to parse the data - it is simply sourced:
• All specifications are contained in an argument to the procedure Module:3

proc Module { module_name definitions } {
 global fragment
 global module
 global module_data

 set module $module_name
 set module_data data_$module_name
 upvar #0 $module_data a_name
 set a_name(name) $module_name
 set a_name(all) {}

 set fragment($module,no_testcases) 0

 eval $definitions

 return
}

 The Module procedure acts as a container for all specifications. That way it is always clear
to what portion (module) of the code a particular fragment belongs.

• Variables are defined using procedures such as Output:

proc Output { varname vartype initcode { checkcode {} } } {
 global module_data
 upvar #0 $module_data params

 if { [lsearch $params(all) $varname] <= -1 } {
 lappend params(all) $varname
 }
 set params($varname,type) "output"
 set params($varname,vartype) $vartype
 set params($varname,initcode) $initcode
 set params($varname,checkcode) $checkcode
 return
}

 The element all stores the names of all variables defined in this way.

3 The code that is presented here does need some cleaning up.

134

• For automatically generating test cases from the information obtained by analysis tools, the

Condition procedure has been defined:

proc Condition { expression value exprcode { checkcode {} }} {
 global module_data
 upvar #0 $module_data params

 set params($expression,$value) $exprcode
 set params($expression,$value,checkcode) $checkcode
 return
}

 There should be a specification for both the true and the false value of the condition.

• The user-supplied test cases are specified by means of:

proc Testcase { title code { checkcode {} } } {
 global module
 global fragment

 set no_testcases $fragment($module,no_testcases)
 set fragment($module,test,$no_testcases) $code
 set fragment($module,title,$no_testcases) $title
 set fragment($module,check,$no_testcases) $checkcode
 incr fragment($module,no_testcases)
 return
}

 In contrast to the automatic test cases which can be constructed as the file with the
information is examined, these “manual” test cases require extra administration, so that
they can be recalled later on.

All the basic fragments in the library that provides the glue, are defined using:

proc Fragment { codename code } {
 global fragment
 global module

 set fragment($module,$codename) $code
 return
}

Because some degrees of freedom are required, for instance to get the names of the variables in,
a number of reserved Tcl variables exist. For instance the fragment that declares a variable in
FORTRAN 90 reads:

Fragment "declaration" {
 $vartype :: $varname
}

The variables vartype and varname are set and expanded when the fragment is written to the
source file:

proc WriteFragment { codename } {
 global fragment
 global outfile
 global module

 set fragm \
 "[list subst -nocommands $fragment($module,$codename)]"
 set output [uplevel $fragm]
 puts $outfile $output
 return
}

135

The option -nocommands is necessary to avoid conflicting syntax in e.g. Java and C.

The example again
Given the above explanation of how TestMake has been set up, let us turn to the Java example
again and see how this works out:
• The preparation fragment defines a new object that will be used throughout the test suite.

The initialisation is meant to reset the status before each test.
• The initialisation fragment puts the object in its original state again, something which will

be done before each test.
• The input fragment for the variable values prepares an array of values from which subsets

will be used in the actual test cases. This is one way to deal with the need for various test
data sets.

• Because the object will accept values one at a time and return the results only via accessor
functions, the call fragment is more involved than its FORTRAN equivalent:

 Call {
 ! Add the relevant data to the object and get the results
 call vstat(values(first:last), vmean, vmin, vmax, vstd)
 }

• By setting the first and last indices into the array, each test case defines its own set of test
data.

• The example does not include any condition fragments, the means to construct test cases
from test paths. Currently, TestMake is somewhat limited in what it can do there (see the
concluding remarks).

The module is specified by the following Tcl code:

Module "vstat" {
 Declarations { vstat v ; int first ; int last ; }
 Preparation { v = new vstat() ; }
 Initialisation { v.restart() ; }

 Input "values" {float[10]} {
 for (int i = 0 ; i < 10 ; i ++) {
 values[i] = (float) i ;
 }
 values[0] = 1.0f ;
 }
 Output "vmean" "float" {
 vmean = -1.0f ;
 }
 Output "vmin" "float" {
 vmin = -1.0f ;
 }
 Output "vmax" "float" {
 vmax = -1.0f ;
 }
 Output "vstd" "float" {
 vstd = -1.0f ;
 } {
 /* If the standard deviation is not positive, failure! */
 Test.failed(vstd != missing_value && vstd < 0.0f,
 ”Standard deviation is negative”) ;
 }

 Call {
 /* Add the relevant data to the object */
 for (int i = first ; i <= last ; i ++) {
 v.add(values[i]) ;
 }
 vmean = v.average() ;
 vmin = v.min() ;
 vmax = v.max() ;
 vstd = v.stdev() ;
 }

136

 Testcase "No data" {
 first = 1; last = 0;
 }
 Testcase "One single value" {
 first = 0; last = 0;
 }
 Testcase "Two identical values" {
 first = 0; last = 1;
 } {
 /* Standard deviation should be zero, otherwise failure! */
 Test.failed(vstd != 0.0f, ”Standard deviation should NOT have been zero”) ;
 }
 Testcase "Two different values" {
 first = 1; last = 2;
 } {
 /* Standard deviation should NOT be zero, otherwise failure! */
 Test.failed(vstd == 0.0f, “Standard deviation should have been zero”) ;
 }
 # Etc.
}

General framework
The Tcl application that is presented in this paper can be regarded as an elaborate example of a
whole class of applications. The characteristics of this class are:
• The need or desire to get rid of repetitious and therefore boring and error-prone coding

tasks.
• The generation of programs or scripts in some language where the structure of the program

is fixed.
• The program to be generated is composed of fixed fragments with only a few degrees of

freedom.

Classic examples include, of course, Yacc and Lex, as generators of C programs that fulfil a
certain limited task (still others are illustrated by Kernighan and Pike, ref. 3), but one can also
think of:
• Simple forms of generic programming, when the programming language itself does not

support that directly or only in a rather awkward way.
• XML data handlers - the if-constructs for branching to the proper tag would then be

hidden.

Right now, TestMake has not been set up with such a more general approach in mind, but its
elements could be used to create such a framework.

Concluding remarks
TestMake takes advantage of several characteristics of Tcl that make both its implementation
and its use easier. With Tcl one can efficiently and effectively manipulate arbitrarily long
strings. The input data can be shaped as Tcl procedures, so parsing the input becomes almost
trivial. All code fragments are stored and handled via associative arrays. Whereas Tcl is
certainly not unique in these respects, it proves a very useful tool.

In its present state, TestMake allows for a number of improvements. The script should
perhaps generate a makefile for the test program, to facilitate this aspect as well, but right now,
it is too restrictive with the construction of test cases from test paths identified by static
analysis tools.

Work is now being done to create the more general framework that was mentioned in the
previous section.

137

Literature
1. McCabe & Associates

User guide to the McCabe Visual ToolSets

2. P. Koopman and J. DeVale
The Exception Handling Effectiveness of POSIX Operating Systems
IEEE Software Engineering, volume 26, number 9, september 2000, pp. 837-872

3. B. Kernighan and R. Pike
The Practice of Programming
Addison-Wesley, 1999

138

9 Creating generalised Tools for

Database Access using Tcl/Tk

Matthias Lüttgert, RISA GmbH (mailto:matthias.luettgert@risa.de)
Dr. Johannes Heinrich Vogeler, Umweltbundesamt (mailto:johannes-heinrich.vogeler@
uba.de)

mailto:matthias.luettgert@risa.de
mailto:johannes-heinrich.vogeler@uba.de
mailto:johannes-heinrich.vogeler@uba.de

Creating generalised Tools for
Database Access using Tcl/Tk

Matthias Lüttger t, RISA GmbH, Ber lin
Dr . Johannes−Heinr ich Vogeler , Umweltbundesamt, Ber lin

Up to two years ago we believed embedded SQL to be the most appropriate method for
programming portable database applications although there are notable differences in the SQL
description area (sqlda) for each database system and programming graphical user interfaces using
OSF/Motif is very tedious. Besides that we had to consider that our applications should not only
work with different database management systems but on different platforms as well.

In particular to provide versions for UNIX−Systems and MS−Window requires to maintain two
different designed programmes for the same purpose ...

During the last years some powerful Tcl interfaces for the most commonly used database systems
have been published; historically three ’ interface families’ have been evolved:

Family of oratcl interfaces
� ADABAS−D adabastcl
� ORACLE−7 and ORACLE−8 oratcl (different versions)
� SYBASE sybtcl

Family of isqltcl interfaces
� INFORMIX isqltcl
� MySQL sql−tcl

The odbctcl interface odbctcl

which from the point of view of a programmer are permitting a very similar access to databases
running on different database management systems even for complex SQL statements as commands
prepared at run time. Powerful Tk widgets allows for an efficient programming of graphical user
interfaces for UNIX and Windows

Besides of that we found that data types implemented in Tcl are more suitable to handle records and
intermediate tables. As an example let me illustrate the advantage of the list data type:

ESQL/C
� SQL is appropriate to describe sets
� C is used to handle single items of database records using host variables to be

declared carefully

Tcl−Interface for databases
� SQL is appropriate to describe sets
� Tcl handles individual records and single items of those records using lists which need

no prior declaration!

Furthermore there are other things as arrays of lists to handle result tables in a comfortable way;
scrollable listboxes for representation of results ...

− 1 −

140

Conclusion: the Tcl interfaces for the database management systems are notable reducing the
differences in database access for different database management systems. The power and
versatility of Tcl encouraged us to write an abstraction layer for these database commands in Tcl −
the DAC (= database abstract commands); we decided to restrict ourselves to classical database
operations (select, insert, update, delete) for which the procedural/cursor oriented approach seems
to be the most suited.

At the beginning there were abstract commands for INFORMIX, ADABAS−D and ODBC (having
in mind MS−ACCESS and ORACLE). Revising our code we found that we had to think of a new
architecture of our programme to take into account

� extensions for other database management systems
� modularisation for independent maintaince of different contributions
� unified error handling within an application − independent of the database system actual in

use.

Namespaces turned out to be a adequate mean to make up a structure of our software, which
corresponds to the requirements mentioned above.

::dac::
Toplevel, which also covers global data for every database session and some general
procedures

::dac::init load the tcl interface needed, set globals
::dac::errmsg error handler (uses symbolic error codes

e.g. SQLE_NOTFOUND)

::dac::cmds::
database abstract command

::dac::cmds::connect open a database session
::dac::cmds::disconnect close a given database session
::dac::cmds::open open a cursor for a database session and a statement

 ::dac::cmds::close close an open cursor
::dac::cmds::fetch fetch a record from an open cursor
::dac::cmds::insert insert rows in a table
::dac::cmds::update update rows of a table
::dac::cmds::delete delete rows from a table

 ::dac::cmds::commit make changes permanent
::dac::cmds::rollback undo any change back to to last commit/rollback

 ::dac::<database system>::
database commands specific to a particular database system (ada := ADABAS−D)

::dac::ada::fetch fetch a open cursor within an ADABAS−D session

these specific procedures may use also syntax checking and transform procedures we
are keeping in the following utility namespace

::dac::syntax::
procedures for syntax checking and transformations (mostly quoting), normally
called by the database specific procedures

− 2 −

141

At a first glance it seems a superfluous expense writing special procedures for inserting or
modifying data in a table since the tcl−Interface of a database system allows to issue SQL
commands passed as a string. In principle that is correct, however we found notable differences
with respect to the syntax of the SQL commands passed as arguments and the handling of errors –
and all that depending of the database system. We decided to hide these differences in the functions
specific for a particular database system.

Although it has been our basic idea to get rid of problems arising from different structures of the
sqlda, we found that sometimes there is a need to execute prepared commands on a native level. We
therefore added the procedures

::dac::cmds::prepare prepare a command at runtime
::dac::cmds::exec_native execute a prepared command

Adding a library space

::dac::lib::
procedures for complex operations as e.g. 1toN relations

for database procedures, which are useful for solving common problems, this should be sufficient
to write a portable database application using only Tcl/Tk

So far we have finalised the DAC for ADABAS−D, INFORMIX, ORACLE−8 and ODBC and
written a complete application for a database of hydrological data in DAC.

But this is not all we are aiming for: a complete development environment requires further admi−

− 3 −

Database

Application

Tcl database extension

::dac::<database system>::cmd
(open, fetch,....)

::dac::cmds::cmd
(open, fetch,....)

::dac::errormsg::dac::init

142

nistrative functionality to be added:

::dac::cmds::get_tables get the table names belonging to a database
::dac::cmds::get_table_info read the definition data of a table
::dac::cmds::create_table create a table
::dac::cmds::drop_table delete a table
::dac::cmds::create_index create an index
::dac::cmds::drop_index delete an index

Again at a first glance it seems that there is no need for these functionality since it is possible to
issue a SQL script as a string to the Tcl−interface. Of course this works; however it is not tclish! In
tcl it is far more convenient to use arrays and/or lists to handle these informations and to perform
the operations mentioned above accordingly. We propose to proceed this way to build up a
complete Tcl/Tk API for databases.

It is our intention to make this code available for the Tcl/Tk community in order to start an open
source project for an easier way to write portable database applications and to demonstrate that
Tcl/Tk is a language more suitable for that purpose than other classical languages as for instance
C/C++. We already got the official permission to release this code under Tcl−License.

Roadmap

− 4 −

143

10Using TCL as Middleware for Parallelizing En-

vironment Development

M. Giordano (mailto:M.Giordano@cib.na.cnr.it) and M. Mango Furnari (mailto:
M.MangoFurnari@cib.na.cnr.it)
Istituto di Cibernetica C.N.R.

mailto:M.Giordano@cib.na.cnr.it
mailto:M.MangoFurnari@cib.na.cnr.it
mailto:M.MangoFurnari@cib.na.cnr.it

Using TCL as Middleware

for Parallelizing Environment Development

M. Giordano and M. Mango Furnari
Istituto di Cibernetica C.N.R.

Via Toiano, 6 I-80072 Arco Felice, Naples, ITALY
Phone: +39-81-8534229/227

{M.Giordano,M.MangoFurnari}@cib.na.cnr.it

Abstract

Software Development Environments (SDE) are typically software systems equipped
with a collection of integrated tools to assist the programmer in the software develop-
ment and/or maintenance. SDE design in parallel programming is much more complex
since the parallelization of large application requires a deep knowledge of the code struc-
ture and data-usage to individuate parallelism sources as well as sophisticated compiler
technologies and runtime support to efficiently exploit the discovered parallelism on the
target parallel architecture. Therefore, the parallelization of large applications requires
the support of interactive compilation environments, equipped with program structure
visualization and interactive tools, to better exploit both user and compiler knowledge
to drive the parallelization process. In this paper we describe the Graphic Parallelizing
Environment (GPE), a unified environment for parallel program development based
on user interaction with different components: compiler modules providing specialized
services (optimizations, analyses, etc.), visualizers of program representations, smart
editors and modules for the parallelization control. The GPE uses Tcl as middleware
for the integration of its components as well as for component interoperability and data
exchange. Moreover Tcl/Tk serves as development environment for the GPE graph-
ic tools that implement user interaction in terms of program structure visualization,
parallelism control and syntax oriented editors.

1 Introduction

The term environment is typically used to describe an integrated collection of tools that
assist the programmer in developing and/or maintaining software [1]. Though histori-
cally derived from a collection of independent programs, compilers, debuggers, etc., the
Software Development Environment (SDE) attempts to be more than the sum of its
parts. Its goal is to simplify and speed the development process through a tighter inte-
gration of the underlying tools, taking benefits from user interfaces, control integration
and data sharing among the tools.

This scenario is much more complex for the development of parallel applications.
The needs of an efficient SDE in parallel programming is strongly pushed on the fact
that parallel processing, which was originally conceived for high-end systems, is current-
ly migrating to low-cost workstations. This trend will continue towards PC-systems in
the future. Programmers for these architectures find significant difficulties in getting the
best performance out of their programs. Base software (including compiler and runtime
support) for these architectures lacks of the required functionality to exploit all the par-
allelism available in the application in particular when running in a multiprogramming
setting.

1

145

Therefore, the parallelization of large applications requires the support of interactive
compilation environments, equipped with program structure visualization and interac-
tive tools, to better exploit both user and compiler knowledge to drive the parallelization
process. Graphical representations of program structure, control flow, and data usage
have always been part of the programmer’s repertoire of tools and techniques. Such
representations can simplify and enhance the explanation of specific aspect of a pro-
gram and aid the user in understanding the parallelism it is worth to be exploited at
program execution.

In this paper we describe the Graphic Parallelizing Environment (GPE), a unified
environment for parallel program development based on the interaction of user choices
and compiler techniques for an efficient program parallelism exploitation. A program
parallelizing environment based on this approach requires the integration of different
components: compiler modules providing specialized services (optimizations, analyses,
etc.), visualizers of program representations, smart editors and modules for the paral-
lelization control.

We choose Tcl/Tk as integration language for those components. The Tcl inter-
face towards the C programming language allows to easily design wrappers to translate
internal data structures of existing environment modules into Tcl data. In this way
the Tcl middleware represents the shared arena for operating on and exchanging data
among different interacting modules.

The paper is so organized: section 2 gives an overview of the GPE design archi-
tecture with a brief description of GPE main components; section 3 show more details
about component interaction, and data structures used for communication during a
GPE session; section 4 is a overview on some related works, while section 5 reports
some concluding remarks.

2 The GPE architecture

The basic idea of the GPE is that program parallelization is the result of a cyclic process
in which, at each round, the user has a primary role interacting with the compiler and
the other tools of the GPE. User actions includes to refine task partitioning, decide
task and loop parallelization according to compiler analysis results and previous user
specifications, drive parallel code production for program units and mark code to be
instrumented for execution.

During a GPE session user-compiler interaction is implemented around the notion
of program task graph (TG). We define the program TG as a directed graph whose
nodes are tasks, that is program computational units like statements, loops, subroutine
calls, or basic blocks. The arcs in the graph impose sequentiality among tasks, and
the execution order of tasks result from data dependences analysis. Then, the task
parallelism is expressed by the graph structure: branching points individuate program
units that can be executed in parallel.

During compilation in a GPE session, the user may interact with different views of
the program TG and with other textual representations: he (she) gets information like
concurrency and data and control dependences [5] among tasks detected by the compiler;
the user may also interact with these graphic views to impose task granularity, task
parallelism (or serialization) and remove unwanted dependences.

User intervention is carried out by means of OpenMP directives [13] injection into
the intermediate code, that is textual changes that the compiler uses to recompute
dependence analysis and to build the task graph according to the user decisions.

after compilation and program execution the user may gather running profiles of
the parallel code and use this information in the next round of the tuning cycle, in a
feed-back process that should converge to the optimal solution.

In what follows we summarize user activities during the GPE session together with
the tools used to perform them:

2

146

Post−
Processor

Instrum.

Paralleliz.

Optimiz.

Transform.

Analysis

Pre−
Processor

Parafrase−2

Jedit
�

TclTk
�

Tcldot
�

HTGviz

Program Editing

Data

Structures
�

(HTG)
�

Pass Configuration and Run

Visualization
�

Modification

Figure 1: GPE architecture

• program editing and first parallelism specification by means of directive insertion
(Jedit);

• compilation process configuration and driving (Jedit + Parafrase-2);

• visualization of program task graph parallelism (either specified by the user or
detected by the compiler), task dependences visualization (HTGviz);

• program task graph parallelism tuning, by selecting tasks and, then, inserting
OpenMP directives in the task-associated code (HTGviz);

• selection of parallel code production and instrumentation, by marking tasks and,
then, activating code generation passes (HTGviz + Parafrase-2);

• program execution (Jedit).

Figure 1 describes the GPE architecture, its components and how they interact.
GPE components are described in more details in the following subsections.

2.1 The parallelizing compiler: Parafrase-2

Parafrase-2 [15, 16] is a source-to-source multilanguage restructuring compiler. It
provides a reliable portable and efficient research tool for experimenting with program
transformations and other compiler techniques for parallel shared memory supercom-
puters. Figure 1 shows the different components of the Parafrase-2 framework.
Parafrase-2 uses an aggressive approach for dependence testing [4], including tra-
ditional tests as well as symbolic dependence analysis techniques.

The compiling process is carried out by applying several intermediate passes. Each
pass implements a specific compiler activity, like the production of program control flow
graph, the induction variables transformation, the code generation, the code instrumen-
tation, and so on. Each pass operates on the internal data structures to transform the
program to a form suitable for the next pass. Passes can be executed in any sensible
order; this is achieved requiring that the form of the data structures is left invariant by
each pass. The output of Parafrase-2 is the modified version of the input program
representation, which is acted on by a post-processor to produce the required output
language of the original one. The Parafrase-2 passes are grouped into the categories
shown in Figure 1.

As already mentioned, in the GPE the compiler-user interaction is implemented
around the notion of program task graph (TG): we are convinced, indeed, that the pro-
gram TG could be considered the program representation closer to the user conceptual
program representation in the case of parallel execution. The program TG is also used
by Parafrase-2 as intermediate program representation to express and synthesize all
parallelism discovered by the compiler analyses passes. The Parafrase-2 approach to
task formation is based essentially on the syntax of the underlying language. We define

3

147

Figure 2: The Jedit interface

as task a section of code delimited by “natural” boundaries, such as a statement, loop,
subroutine call, or a basic block. Nodes in the task graph correspond to tasks, and an arc
implies the existence of one or more precedences between two tasks. During execution,
a task cannot start unless all the preceding tasks, which it depends on, have completed
execution.

If we represent each loop in the TG as a unit of potential parallelism, and we
consider that the loop body can be composed of other sub-units, like basic blocks and
other loops, in an arbitrary number of nestings, we understand that the structural
complexity of the task graph could overcome the users capability. To manage this
situation Parafrase-2 adopts as program representation a hierarchical version of the
task graph, named Hierarchical Task Graph (HTG) [5, 6, 7, 8]. It must be observed
that the HTG implicitly contains all parallelism in a given program, from coarse- to
fine-grain parallelism.

In the GPE we used an extended version of the Parafrase-2 compiler, (the
NanosCompiler

1) where the Fortran front-end has been modified to parse OpenM-

P directives. Also the compiler passes, dealing with task formation and HTG building,
were changed to account for user directives. Directives express how the user has par-
titioned the program into tasks, at the coarser granularity, and how they have to be
executed (concurrently or serially) and synchronized. The compiler builds the HTG
and the other representations (like data and control dependence graphs [5]) in such a
way they faithfully implement user choices.

With this approach, the compiler assumes that all user choices are “correct”. There-
fore, the user is responsible for the correct program execution through a careful use of
directives. Once the user has fixed the HTG lower hierarchical level (coarser tasks),
the compiler can apply transformation, optimization and analysis passes to parallelize
the code, and, then, refine the HTG inside the user-defined task. Therefore, the HT-
G synthesizes both user parallelization, expressed by input OpenMP directives, and
automatic detected parallelism, coming from compiler dependence analysis.

4

148

2.2 The extensible editor: Jedit

The Jedit text editor application is a customizable multi-mode X Windows text editor.
It is distributed as part of the Jstools package, a suite of applications written in
Tcl/Tk and some libraries that they share. The Jstools distribution (applications,
libraries, and support files) is copyrighted by Jay Sekora [19].

Jedit is intended to be flexible and configurable. Preferences panels let users to
choose among sets of text bindings, including Emacs and rudimentary vi emulation,
and general aspects of the application behavior. Furthermore, hooks are provided to
let a further customization application behavior via startup files written in Tcl. The
editor supports a number of keyboard shortcuts for menu commands, as well as a few
keyboard shortcuts for buttons in dialogue boxes. The editor can be incorporated into
other Tk-based applications as a set of libraries.

Jedit supports the notion of distinct editing modes for different types of file. There
are a few modes distributed with the editor, and you can implement additional modes,
or modify the existing ones. The editor will behave differently depending on which
mode it is in. For instance, an editing mode for C code might try to automatically
change the indentation of each line based on the structure of the code, or a mode for
TeX source might display TeX keywords in a different font from ordinary text.

We extended Jedit by creating a new editing mode that inherits all the functional-
ities of the default mode and adds new functionalities oriented to the Jedit use within
the GPE environment. We implemented a new functionality to easily manage OpenM-

P directives insertion into the edited file (see Figure 2). From this menu it is possible to
select the directive (or clause) we want to insert on the text selection. A syntax control
minimize the number of writing errors that are often very frequent in the “hand” typing
of programs and are responsible of most compilation errors.

The main functionalities are those implementing the compiler passes configuration
and control. Figure 2 shows an example of compiling the LU2 program with the con-
figured passes listed in the rightmost window. The Jedit interface provides an easy
way to add and remove passes from the configured set and specify pass arguments and
options. Once a pass has been selected, the list of all passes it depends on is automat-
ically included in the set of configured passes. This feature helps the user in having a
clear idea about which transformations (optimizations) are applied and in which order.

Once the pass configuration is chosen, the user can go from the editing phase to the
compilation. Compiler passes execution is controlled from the Jedit interface. After the
compilation is finished, the user has two choices: he (she) may compile again, specifying
new (or the same) passes, otherwise he (she) may load the result of the source-to-source
compilation, edit it, compile it, and so on.

2.3 The program task graph visualizer: HTGviz

The program task graph visualizer (HTGviz) is automatically activated when the pass
show hier is selected for compilation. HTGviz has been designed to offer different
HTG views concerning:

• program partitioning into tasks of any granularity, visualizing the HTG structure
across hierarchy levels and the code associated to HTG nodes. This view is useful
to discover the best program partitioning into tasks according to the user-chosen
granularity.

• intertask dependence analysis, visualizing, in the HTG, task sequential execution
order, with control and data dependences among tasks. This view is useful to
discover, while looking at the corresponding code, unnecessary or removable de-
pendences that inhibit parallelization, information otherwise hidden to the user.

1developed within the Esprit Project NO.21907 - http://www.ac.upc.es/nanos

5

149

Figure 3: HTGviz interface

• program parallelization, visualizing, in the HTG, task parallel execution order
showing only precedence relations among tasks. This view gives a complete over-
look of all program tasks, discovered by either the compiler or the user (directives),
that could be executed in parallel, at each level of the hierarchy. This will enable
the user to exploit only some parallelism and decide the sequential execution of
other tasks.

These different views offered by the HTGviz may serve different kinds of users:
some of them may be more interested in the program task partitioning or dependence
analysis performed by the compiler; other users may want to focus on the program
parallelization resulted either from the use of directives or from the compiler analysis.
The HTGviz is composed of five main user interfaces showed in Figure 3:

• Task graph visualization window - Here the user navigates the HTG through
hierarchy levels. For each program module (main, subroutine, or function), the
user may expand (collapse) the HTG on single nodes or as a whole: in this way he
(she) may set program partitioning grain towards parallelization. Several events
are allowed on the HTG view: selecting nodes and arcs to gather information about
the related code, dependence information, and so on; selecting nodes for OpenMP

directive insertion in the text of the program intermediate version; alternatively,
hide/show control flow arcs, precedence arcs, data and control dependence arcs to
switch from one HTG view to the other.

• Program code window - Program code lines are uniquely indexed by means of
the belonging module identification number, and a line counter related to the first
line of that module. This interface was designed to always show the correspondence
between program statements and HTG nodes during all user actions, like HTG
navigation, browsing, and directive insertion.

• Task graph attributes window - This interface reports all useful HTG infor-
mation, like node type (loop, basic block, and so on) and arcs type (precedence,

6

150

data dependence, and so on). Another important information for dependence arcs
is the set of variables causing the dependence.

• Directive composer window - This interface was designed to help the user
in composing directives to be inserted, by specifying clauses and arguments for
those clauses. The composer has a syntax control that inhibits insertion of wrong
formed directives. Once the HTG nodes (and their code) are selected and the
directive composition is complete, the directive is ready to be inserted. After
directive insertion, the user may force the compiler to produce the HTG changes
caused by directive insertion.

• Parallel code & instrumented code windows - From these interfaces it is
possible to drive the code generation step: the user selects the program units
(parallel sections and loops), annotated with OpenMP directives or parallelized
by the compiler, for which to produce parallel code and instrumentation. In-
strumented code is used to get detailed information about performances of the
program parallel execution.

3 The GPE middleware: Tcl/Tk

The GPE uses the Tcl/Tk as middleware for the integration of its components as
well as for component interoperability and data exchange. In fact, interoperability is
easier within the Tcl scripting environment since here it is easier to manipulate the
large amount of symbolic information that is produced and used during the compila-
tion process. Some components require the same information to be computed in order
to provide their services: the use of a shared arena allows to produce only once this
information and make it permanent and accessible to all the components that request
it. In the integration layer, information coming from different components can be easily
compared and combined to produce newer and more sophisticated services.

The GPE core component is Parafrase-2 whose architecture is modular, that is
the compiler passes are implemented in modules (subroutines). Since it is easy to extend
the Tcl language adding new commands associated with C or C++ procedures, the
result was the compiler split into a set of procedures (passes) imported by the Tcl

interpreter as new commands. When the GPE starts a Tcl/Tk interpreter is started
and it runs and interacts with the compiler modules as long as the GPE session is alive.

Graphic components, like the task graph visualizer (HTGviz) and the editor (Jedit)
for program editing, compiler passes management and OpenMP directives insertion,
are implemented in the Tcl/Tk environment. While HTGviz is a new developed
component of the GPE, Jedit is a software package developed by other research groups,
integrated into the GPE and extended with new editing modes and functions. The
development of GPE proved us that Tcl is a good platform for fast prototyping of new
software components as well as for integration and re-use of existing software.

In the GPE all the compiler environment (data structures and procedures) is visible
to the Tcl/Tk interpreter. Therefore all graphic components can access compiler
data structures and modify them. Therefore, the original Jedit editor was extended to
provide the user with an interface for the configuration and execution of compiler passes.
The user may interactively decide which is the next (set of) pass(es) to be (re)applied.
Jedit interacts with the compiler front-end module by means of configuration files.
These files register the compilation pass list as well as all the specified options for each
pass. Some options are for instance, debugging level, trace files, program analysis tuning
options, program transformation and optimization switches, and so on.

The second Jedit extension was to provide the user with smart editing facilities
towards OpenMP directive insertion and automatic check of directive syntax. This
functionality was implemented using the regular expression processing capability of
Tcl. The use of regular expressions in pattern matching and substitution is a powerful
and efficient way for string processing which is the basis of syntax oriented editors.

7

151

Most of compiler-user interaction takes place around the notion of program HTG.
HTG visualization serves to help the user in understanding program structure, control
flow and data-usage to discover parallelism sources. The HTG is also a mean for the
user to impose program parallelization via graph manipulation and directive injection
into the original code. Therefore the main data structure to be visualized in the GPE

is the program HTG.
The HTGviz tool was designed mainly as an user interface for program paralleliza-

tion tuning and as a visualizer for the program HTG produced by Parafrase-2. The
HTGviz is implemented in Tcl/Tk using a library, named TclDot, that adds graph
manipulation facilities to Tcl/Tk. TclDot is part of the Graph Visualization Soft-
ware (GraphViz) package2 [12].

The HTG and all its information (internal to the compiler) are dumped into the
Tcl environment: here a directed graph in Dot format is created and enriched with
annotations to reproduce all the information and the structure of the HTG built by the
compiler. This graph is then showed by the HTGviz to the user in an eye-pleasant
manner together with the corresponding program code in textual format. The user
acts on the HTG dump and, by means of graph manipulation he (she) selects parts
of code and add OpenMP directives to overwrite the parallelism specification. Once
the changes are done the compiler processes the modified intermediate code once again
building a new HTG which faithfully reproduces user actions, and so on.

4 Related works

Graphic program display have been developed in the parallelization context mainly
to analyze and to assist the users on the interpretation of parallel program execution
performances. In this case the purpose of a visualization tool is oriented to debug a pro-
gram, to evaluate or optimize performance, to provide a form of data structure display,
display that conveys knowledge of the functioning of a program. Such performance eval-
uation systems analyze the raw data, collected during the parallel program execution,
to determine overall performance metrics and statistics. Systems, such as ParaGraph

[11], analyze, for example, the message traffic coming up from the execution of parallel
programs on a distributed memory machine, matching send and receive events, keep-
ing track of message counts and volumes. These events are used to create higher-level
visualizations of utilization, computation and task information. Task displays in Para-

Graph are program graphs in which the nodes represent program entities and the arcs
represent call relations or temporal ordering.

Stat/Pat [3] is an interactive toolkit for the development and debugging of multi-
tasking Fortran programs. Dependence graphs are generated in which a node repre-
sents a variable access, and an arc connects two accesses whenever a write access can
reach a read access. These nodes are labeled with source line number, the variable name
and subscripts, and a notation of whether the access was read or write. A concurrency
history graph represents the reachable states in the execution of the parallel program
and can be used to detect data-usage and deadlock errors.

In [2] an integration of the Pablo Performance Environment [17] with the For-

tranD compiler environment is described. The integration relies on extending the
Pablo environment to support abstract parallel languages, and, for the compiler, to
export the necessary information to correlate dynamic performance data with the pro-
gram source code.

Parascope Editor [10] is an interactive parallel programming tool that assists users
in developing scientific Fortran programs. It displays the results of sophisticated
program analysis, provides a set of powerful interactive transformations and supports
program editing.

2developed at the AT&T Laboratories and Bell Laboratories (Lucent Technologies)

8

152

SUIF Explorer [14] is another visualization tool, similar to Parascope Editor
for the goal pursued. It is an interactive parallelization tool based on interprocedural
parallelization techniques and dynamic execution analyzers to identify the important
loops that are likely to be parallelizable. Furthermore, SUIF Explorer uses the
program slicing concept to identify the subset of statements that is relevant to determine
if a data dependence exists in a loop. The results of these analysis are presented to the
user through sophisticated displaying tools.

NaraView [18] is a parallelizing environment where program visualization tools are
used to illustrate the program structure and data dependences. The program structure
view illustrates the hierarchical loop structure of a given program and suggests which
parts of the program can be parallelized. The data dependence view visualizes each data
dependence on every variable or array element which is access in a specific loop. By
using these views, users understand which part of the program can be parallelized.

5 Conclusions

GPE is an interactive compiling environment equipped with graphic tools to exploit
user knowledge and compiler techniques for the efficient parallelization of sequential
programs. The core of the system is Parafrase-2, a source-to-source parallelizing
compiler, while Tcl/Tk is the integration language for components interaction, user-
system interaction and graphic processing. The graphic tools of GPE are: Jedit, a
program editing tool with OpenMP directives insertion facilities, with an interface
to control and manage compilation passes execution; HTGviz, a tool to visualize the
parallel program representation (task graph) and data dependences, with an interface
for parallelism tuning and task granularity control.

In the GPE interoperability is afforded by the Tcl scripting environment: with Tcl

it is easier to manipulate the large amount of symbolic information that is produced and
used during the compilation process. Some components require the same information
to be computed in order to provide their services: the use of a shared arena allows
to produce only once this information and make it permanent and accessible to all
the components that request it. In the integration layer, information coming from
different components can be easily compared and combined to produce newer and more
sophisticated services.

In our experience Tcl/Tk proved to be a good platform for the design and imple-
mentation of a software developing environment like the GPE. In fact, in the Tcl/Tk

environment it is easier to carry out activities like the fast development of new software
graphic components as well as the integration and re-using of existing software packages.

When developing complex graphic user interfaces (GUI) like the HTGviz, the use of
Tcl/Tk gives the possibility of quick assembling graphic objects (widgets) and binding
commands to them for the fast prototyping of the interfaces that make up the GUI.
On the other hand, as the GUI code get larger, Tcl/Tk code becomes more and
more difficult to understand, maintain and extend. The use of IncrTcl in a future
development of GPE will offer the object-oriented abstraction as a powerful support
for developing large GUI applications.

When developing large application you can also take advantage of software re-use, as
we did with the Jedit software, especially when you may choose among lot of software
products available in a large developer community like the Tcl one. This is even more
true when embedding third party Tcl libraries and packages into your application is
an easy task.

References

[1] Adams R., Tichy W., and Weinert A. The Cost of Selective Recompilation and
Environment Processing. ACM Trans. Soft. Eng. and Meth., 3, 3–28 (1994).

9

153

[2] Adve V.S., Wang J.C, Mellor-Crummey J., Reed D.A., Anderson M., and Kennedy
K. An integrated Compilation and Performance Analysis Environment for Data
Parallel Progams. CRPC-TR94513-S (1994).

[3] Appelbe B., Smith K., and McDowell C. Sart/Pat: A parallel programming toolkit.
IEEE Software, 6 (1989), 29–38.

[4] Banerjee U. Dependence Analysis for Supercomputers. Kluwer Academic Publisher
(1988).

[5] Girkar M. Functional Parallelism: Theoretical Foundations and Implementa-
tion. PhD Thesis, Dept. of Computer Science, University of Illinois at Urbana-
Champaign (Urbana IL, 1992).

[6] Girkar M. and Polychronopoulos C.D. The HTG: An Intermediate Representation
for Programs Based on Control and Data Dependencies. CSRD TR 1046, Univ. of
Illinois at Urbana-Champaign (Urbana IL, 1990).

[7] Girkar M. and Polychronopoulos C.D. Automatic Detection and Generation of
Unstructured Parallelism in Ordinary Programs. IEEE Trans. on Parallel & Dis-
tributed Processing (1992).

[8] Girkar M. and Polychronopoulos C.D. The Hierarchical Task Graph as a Universal
Intermediate Representation. Int. J. Parallel Programming, 22 (1994), 519–551.

[9] Hall, M.W., Anderson, J.M., Amarasinghe, P., Murphy, B.R., Liao, S.W., Bugnion
E., and Lam, M.S. Maximizing Multiprocessor Performance with the SUIF Com-
piler. IEEE Computer (December 1996).

[10] Hall M.W., Harvey T.J., Kennedy K., McIntosh N., McKinley K.S, Oldham J.D,
Paleczny M.H., and Roth G. Experience Using the ParaScope Editor: an Interac-
tive Parallel Programming Tool. In Proceedings of the Symposium on Principles
and Practice on Parallel Programming (San Diego, CA, May 1993).

[11] Heath M.T., and Etheridge J.A. Visualizing the performance of parallel programs.
IEEE Software, 8 (1991), 29–39.

[12] Krishnamurthy B. Practical Reusable Unix Software. John Wiley Sons (1995).

[13] OpenMP Organization, Fortran Language Specification, v. 1.0.
http://www.openmp.org/openmp/mp-documents/. (October 1997).

[14] Liao, S.W., Diwan A., Bosch R.P., Ghuloum A., and Lam M.S. Suif Explorer: An
Interactive and Interprocedural Parallelizer. In Proceedings of the 7th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming (Atlanta,
Georgia, May 1999).

[15] Polychronopoulos C.D., Gyrkar M.B., Haghighat M.R., Lee C.L., Leung B.P., and
Schouten D.A. Parafrase-2: An Environment for Parallelizing, Partitioning, Syn-
chronizing, and Scheduling Programs on Multiprocessors. Int. J. of High Speed
Computing, 1, 1 (1989).

[16] Polychronopoulos C.D., Gyrkar M.B., Haghighat M.R., Lee C.L., Leung B.P., and
Schouten D.A. The Structure of Parafrase-2: An Advanced Parallelizing Compiler
for C and Fortran. Languages and Compilers for Parallel Computing, MIT Press
(1990).

[17] Reed D.A., Aydt R.A., Noe R.J., Roth P.C., Shields K.A., Scwartz B.W., and
Tavera L.F. Scalable Performance Analysis: The Pablo Performance Analysis En-
vironment. In IEEE Proceedings of the Scalable Parallel Libraries Conference, Ed.
Skjellum A. (1993), 104–113.

[18] Sasakura M., Joe K., Kunieda Y., and Araki K., NaraView: an Interactive 3D
Visualization System for Parallelization of Programs. ISHPC’ 97, Lecture Notes in
Computer Science 1336 (1997), 231–242.

[19] The Jstools Application suite and libraries. http://www1.shore.net/∼js/jstools/

10

154

11Tcl on the iPaq

Lindsay Marshall (mailto:Lindsay.Marshall@newcastle.ac.uk)
Dept of Computing Science
University of Newcastle upon Tyne

mailto:Lindsay.Marshall@newcastle.ac.uk

Tcl on the iPaq
– A Report –

Lindsay Marshall

Dept of Computing Science
University of Newcastle upon Tyne

UK NE1 7RU

Abstract

The use of Linux on PDAs is currently a hot topic for
discussion and research. A lot of application
development that is being done in this area uses either
Java or Python. In this paper I look at using tcl/tk as
a development language and suggest that it may be
more suitable than either of the more frequently used
languages.

Introduction
There has been much talk recently of a new breed of PDAs running Linux
instead of PalmOS or Windows CE. The Agenda is on example and Sharp are
promising a Linux based machine as well. However, for some time now the
Linux-based PDA has been a reality, albeit one that costs rather more than a
Handspring or Palm Pilot for the basic hardware. There are several hardware
bases that people used, but the most common is the Compaq iPaq – a handheld
with a 240x320 16 colour display, upwards of 16M of RAM and 16M of flash,
powered by a 206 MHz StrongARM CPU. The iPaq can be expanded using a
sleeve system and so can have PCMCIA cards connected to it.

The iPaq comes with WIndows CE loaded on it, but for an experienced
computer user it is a (fairly) easy matter to replace this with one of several
Linux distributions. These distributions all use the same basic port of the 2.4
kernel to the ARM processor, but come with different sets of applications and
file system layouts. I have been experimenting with the Familiar distribution
which in its recent versions supports a journaling file system – particularly
useful for flash memory which can only carry out a finite number of writes
before it fails. The operating system has drivers for a wide variety of add-ons
and wireless networking worked straight away for the card the Wavelan card I
use.

The applications that come with Familiar vary from version to version but
they usually include a shell (ash), the X Window System, the iv editor and
Python. (The very latest version uses a package management system that
allows control over what is installed.) Many of the Familiar team are Python
aficionados and their thinking is very much geared towards using Python to
produce a set of PDA applications for, as it stands, an iPaq running Familiar is
not especially useful as a PDA.

156

Naturally, being a tcl devotee, I see things differently and it was instantly
obvious to me that using tcl on the iPaq would be a great improvement over
Python. For a start the basic interactive tcl interpreter is a much better shell
than ash! I tested the waters by asking the mailing lists about tcl and
uncovered three other people using tcl, and one person who was said that they
had tried it but that it was painfully slow – this did not square with the
experience of the other users so I pushed on.

The Basic Port
The first requirement was a version of wish. I could probably have copied
someone else’s binary but as I wanted the possibility of playing around with
extensions I thought that I had better build it myself, which experience of tcl
suggested would not be a problem. And it was not a problem – once I had
managed to get hold of a working arm cross-compilation system and copied all
the necessary libraries from the iPaq up to my development platform. Many
iPaq developers use a system provided by Compaq for their compilations but
my experience of trying to use this was not positive so I decided on a
standalone approach.

With all the tools in place the standard installation worked smoothly and,
when everything was copied across, wish worked straight away and has yet to
fail for me. This speaks volumes both about the quality of the tcl/tk
distribution and of the porting work on the iPaq, especially the X Windows
port.

First Steps and Stumbles
After playing around with the system a little I decided that I needed to give it a
thorough work out so I loaded my Zircon IRC client and ran that. And I had the
first spot of trouble. Not, I must stress with tcl, but with the pen input system
that comes with the X distribution. I simply could not get it to give me a ‘.’ and
so I couldn’t setup the IRC server name I wanted to connect to! (At this stage I
had dismally failed to work out how to use the on screen keyboard application
as well so that was no help either.)

Using IRC on my development machine I managed to find the right people to
ask and was pointed at an improved pen input program (xstroke) and told how
to use the screen keyboard, so, better armed, I re-ran Zircon and made a
connection. The speed of the wireless connection was not a problem, the pen
input wasn’t much of a problem, but the big windows that appeared certainly
were. The standard Zircon channel window was set up for a much larger screen
and needed to be drastically shrunk. The width of the windows is mainly
controlled by a row of control buttons and by reducing the size of the default
button text typeface it was possible to shrink the window considerably and
maintain readability. However the default portrait orientation of the screen
still prevented me from seeing the full width of the window. The Familiar
distribution does not seem to support the ability to rotate the screen
orientation at the moment (some other distributions do) and the kind of textual
interaction that takes place on IRC really needs the wider screen that
landscape would allow. This is an important issue that application developers
need to take into account if they want their programs to be portable as possible
across the range from PDAs to desktops.

157

I had been told by other tcl experimenters that some of the standard dialogue
boxes needed to be resized and this was indeed the case. The two most difficult
problems were the error reporting window, which I did eventually manage to
make usable, and the file selection widget. This latter has so far resisted all m y
(fairly feeble) efforts to get it to fit nicely on the portrait screen – again
landscape would make all the difference here. The 8.4 implementation is very
different from that in 8.3 and both are pretty complex and quite hard to get
grips with. My aim has been to try and preserve the look and feel of Unix tcl/tk
and it may be that this is not the way to proceed. After all, on other platforms
the native file dialogues are used, so inventing a new layout for small screen
systems should not present too much of a problem so long as it maintains the
functionality. Once again it is the layout of the various buttons that the
dialogue offers that present the biggest problems.

The only other area where there are problems is that of default sizing. The
built-in, default sizes for some widgets are too large for small screened
systems and there seems to be no easy way to configure these defaults when
building the interpreter. I’m sure that it is not particularly hard to change
these, but if the standard distribution could collect all these values together in
one place where they could be changed consistently, or perhaps have #ifdefs
for various systems, life would be much easier. (Of course, there probably
already is a central place with all this information, in which case it is the
documentation that needs improvement…)

In general the typefaces on the iPaq under Linux are not great, but work has
been done to port Truetype support and to add anti-aliased fonts into tcl. This
apparently is a major improvement, but I have not yet seen a system running
this way yet so cannot give an opinion.

Experiments
When you boot the iPaq, it starts up the X Window System for you
automatically and runs the Blackbox window manager. This is fine, but is it
necessary? Do you really need a window manager on such a small screen? I
tried running wish directly on top of X and it works fine. It would be perfectly
possible to build a suite of PDA applications that all ran inside a single
instance of wish and by keeping all the individual application toplevel
windows at full screen size there would be no need for a window manager at
all. (The other problem with window managers is that they tend to divert
people from the task in hand – making a useful PDA – towards an obsession
with themes and other such frills)

The snag with doing this is the problem of character input. The standard iPaq
input method is via the pen and users expect some kind of limited handwriting
recognition – having a keyboard widget that pops up and down is, of course, not
hard to do. Two solutions present themselves. The first is to reserve a chunk of
the screen for character input as the Palm Pilot does which is relatively easy,
but is a great waste of screen real estate. The second would be to allow
characters to be written on the screen freely, which is what the scribble and
xstroke applications do at the moment.

I implemented a simple stroke recogniser in pure tcl that works inside a
canvas, and then tried to extend this to work freely on the screen.
Unfortunately the low -level window clipping stops this from the working as

158

the mouse trace is not displayed which is not exactly user-friendly. After some
discussion with others, I tried to work out a solution that used the tk interface
to the X shape extension to allow me to have “invisible” windows. So far,
however, I have had little success, though I did make some nice round
windows. The other problem here is speed – it may be possible to make this
solution work, but it would probably require a lot of the stroke recognition to
be moved into C as an extension.

I don't know if the rootwm patch to tk would allow some other way of
approaching the problem, but it has not been ported to version 8.3 so it would
have been a backward step to spend too much time with it. (The patch kit is for
8.2 and it will not work with 8.3)

The Way Forward
Linux on handheld computers is most definitely a growth area. There is a
considerable amount of consolidation amongst the various development teams
which are trying to merge their efforts in various ways. At the moment, the
Python and Java users seem to be the only players in the applications
development field and if they are left their alone too long they will get too
much of a head start ever to be caught. (And Perl seems to be available in the
most recent snapshot) There is a fantastic opportunity here for the tcl
community to show how the effectiveness of the language. In many cases tcl is
faster than Python and Java, it is much simpler to write and debug programs
and the GUI primitives are much better integrated into the system as a whole.

To be useful a handheld machine needs the typical PDA applications: diary, to-
do list handler etc. etc. There are probably tcl applications out there that
already do most of these things and they could be cleaned up and ported. (In
fact, I am working on my to-do list manager Spike). A web browser would be
nice: the tk html widget and the Http package give you a big step up here. And
how about an ICQ client? An email reader? A Jabber client? Again
applications that exist at least partially and which should move without much
difficulty – as we all know, tcl is the easiest language to port between
platforms.

There is already a work taking place to build a simple object database for the
iPaq that could then be used as a PDA data repository. The developers are
targeting Python applications but there is no reason why there should not be a
tcl layer above it to provide the interface.

Tcl seems to me to be a natural match for handheld systems, but to reach a
wider public the applications need to be there and they need to be written now
before the other systems get a stronger foothold. All the basic tools and nuts
and bolts are there they just need to be assembled, so let’s start putting things
together!

Acknowledgments
All the people working on and using tcl on the iPaq, particularly Steve
Reddler, Rene Limberger and Paul Healy

159

Further Information

Information about the iPaq and Linux can be found in many places on the
Internet, but the best to go for information is

http://www.handhelds.org/

where you will find everything that you may require.

160

12ENIÄK – High-level construction of

user interfaces

Kristoffer Lawson (mailto:setok@fishpool.com)
Fishpool Creations Ltd (http://www.fishpool.com)

mailto:setok@fishpool.com
http://www.fishpool.com

ENIÄK — High-level construction of user interfaces∗

Kristoffer Lawson

Fishpool Creations Ltd

mailto:setok@fishpool.com

$Date: 2001/05/10 19:14:58 $

Abstract

ENIÄK is a high-level protocol, object system and related libraries for controlling and
building user interfaces (UIs) to work with a large variety of display platforms, without change
to the application. The goal of the project is to allow the application designer to build a UI
structure on an abstract conceptual level which can be concretised visually by an independent
display server.

The protocol is built so that a relatively small amount of active communication takes place
between the application and the display server. Thus it works fairly well even on networks with
higher latency. ENIÄK application designers are encouraged to think of the logical structure
of the UI instead of the exact representation. This means that the same application can be
used, without recompilation, with display servers that use f.ex. Tk, Windows, MacOS, curses,
HTML/HTTP etc.

1 Overview

Traditional UI systems tend to describe an interface as a set of visual widgets and layout directives.
Modern systems like Tk can make this process straightforward and easy. However, the application
developer is still forced to lose focus from developing the actual application and has to use time for
placing buttons, fixing frames and windows, working out good spacing and moving widgets around
to get a nice look and feel.

In addition, with UI construction being so concerned with matters of appearance, it is not
always easy to change an existing application to work in different display environments. Tk and
Java’s AWT/Swing do provide a look and feel which is specific to the display platform, but there
is a limit to what the libraries can do to achieve a truly integrated UI. It is also impossible to use
these for HTTP or text applications.

Another problem with traditional systems is that they do not work well when running from
a remote machine. Even with the mechanisms provided by the X Window System it can be quite
inefficient. An X application uses certain primitives to describe the layout of the interface but the
X server is not given higher level understanding of the various elements. This kind of system works
adequately for LANs but in a larger network can make redraws and simple interaction unusably
slow.

ENIÄK is an attempt to make the life of application developers easier by resolving all of these
problems in one large out-stretched sweep and, as with many good ideas in computing, originated
from programmer laziness.

1.1 Goals

Unlike Tk, ENIÄK is not actually an API specification. Instead it defines a general protocol,
object types (akin to widgets), attributes and some construction rules. It does not specify how

∗For the 2nd European Tcl/Tk User Meeting.

1

162

collections of objects, and their attributes, will be rendered — only what their semantics are. In
this way a wide variety of clients, libraries and display servers can be used to visualise the logical
structure on a particular platform. For example, a client library is currently being built using Tcl,
but another one could easily be built for use with C, Java or another script language like Perl
or Python. Similarly the main display server currently being worked on uses the TclHttpd and
HTML, but in the future it would be important to have servers that implement rendering with
Tk, Gtk, Qt and even the terminal library curses, as well as Windows and Mac OS libraries. Here
it is also good to point out that ENIÄK does not really compete with other UI systems but rather
provides a standard layer on top of them so that applications do not have to be designed with a
particular display in mind.

The long-term goal is that developers should think of their user interfaces in terms of abstract
objects forming a tree structure. The design philosophy behind this is similar to LATEX and XML,
where documents are described structurally instead of using rich text. The types of objects used
are also defined to describe what they do rather than what they look like. An example of this
is that there are no such things as windows or frames in ENIÄK, at least not in the traditional
sense. Both of these are essentially just ways of grouping objects together on different levels, so in
ENIÄK group objects are used instead.

With display servers we are attempting to automate many of the layout issues that usually
plague application developers. There is a wide range of layout patterns used for different kinds of
applications. As users we immediately recognise these patterns and with a little experimentation
we are able to use applications that we have never seen before — so long as they follow the semi-
unwritten laws that describe how applications of that class should operate. The belief is that these
patterns can be translated into algorithms which are able to build a layout based on only a logical
description of the application.

A side effect of this design is that the same application can run, without modification or
recompilation, with a variety of different display platforms. Simply by connecting to a different
address, the same application can operate as either an X, Mac or web application.

At this point it is useful to take a look at how this fits in with the Model View Controller
pattern. With MVC the application’s internal structure and operation is separated from the
external interface via a controller which handles events and controls the application model. When
this model changes, observers or views are informed and they in turn change the interface presented
to the user or other external system.

This pattern is not forced on the developer and the role of the controller, model and views are
still aspects of the application and possibly the client library. What ENIÄK does allow in MVC
is for the views to generate only structural information about the interface to the independent
display server. Thus part of the work often left to the views can be fully automised and no longer
burdens the application developer or client library.

One final target for the project is that, despite the huge numbers of possibilities and greatly
reduced burden on application developers, it should be as simple as possible to implement protocol
parsers, to set up basic display servers and most importantly client libraries. So, when possible,
the straightforward approach has been chosen over a more complex one.

2 Communication

The core of ENIÄK is the protocol used between the client, the display server and possibly an
application server. It uses a stream of messages to control objects, their attributes and other
aspects of the application. Initially it was thought that XML could be used for the protocol.
However as it is for just a series of simple messages, XML seemed like overkill. The benefit of
being able to use available parsers is lost, but as the message format is so simple anyway the loss
is not great. XML will be used in the future for ENIÄK resource files.

The format of each message is:

ID COMMAND [PARAM1=VAL1 PARAM2=VAL2 ...]

2

163

ID is a unique identifier of an object in the application’s object hierarchy. A COMMAND is specified
in the complete ENIÄK specification and is basically a message to the object with the given
identifier. The parameter-value pairs define parameters to the command. The parameters and
values a message can contain are specific to the command. Standard commands, parameters and
some values are given in upper case characters.

If a message was dealt with successfully an OK message is sent in response. If an error occurs
at any time an ERR message can be sent. Thus every message is responded to with either an OK or
an ERR. If the message handler wishes to notify of potential errors or risky commands it can do so
with the WRN message, but these must be followed by an OK or an ERR message in response to the
original message.

For example (the arrows show the direction of data flow and are not part of the message):

> 0 NEW TP=GRP ID=MainGroup

< 0 OK

> MainGroup NEW TP=BTN ID=OkButton NM=OK

< MainGroup OK

> MainGroup NEW TP=BTN IDCancel NM=Cancel

< MainGroup ERR ERR=’’Syntax error’’ DET=’’Missing ’=’’’

Here the application successfully creates a new group under the root object. The root object is
created automatically when an application connects to a display server and is given the identifier
0. After that the application creates an OK button and attempts to create a Cancel button, but
for some reason the equal sign is missing between ID and Cancel. The display server reports this
as a syntax error.

3 Objects

ENIÄK objects form a hierarchy which describes the structure of the user interface. Each object
may have a variety of attributes which describe properties of the object. Each object can have any
number of children and one parent. At the top of this hierarchy is the root object with attributes
that usually affect the application as a whole. The parent of the root object is itself.

ENIÄK specifies many types of objects such as buttons, text, event detectors, groups etc.
Instead of going to great measures to describe which types of objects can fit with other types of
objects, a looser approach has been taken. Any type of object can be the child of any other type
of object. It is then the job of the display server to sort out the mess and display something that
reflects the hierarchy in the best possible way.

Each object can have any number of attributes. Some attributes have special meanings for
all objects or certain object types. Upper case is used for standard attributes and mixed case for
extensions.

Each object has a type, which is defined with the TP attribute. A type is actually a hierarchical
string where sub-types are separated from super-types with a dot. One example of this is the event
detection type (EVNT). While it is not possible to create an instance of an EVNT object, it has several
sub-types, like activation detection (EVNT.ACT), that can be used. As with attributes, upper case
is used for standard object types and mixed case for extensions. However, extensions cannot be
made to top-level object types. This means an application and display server cannot use an object
of the type foo, but GRP.foo is allowed. If a display server does not recognise the extension, it
defaults to the first super-type that it understands. With GRP.foo this means that a display server
will default to GRP if it does not understand the foo extension.

When defining layout algorithms the parent object is an important factor and the relation of
the parent to the child is a “rules over” relationship. So the parent is considered to be the more
important of the two, with wider consequences and a child, in a sense, belongs to its parent. How
this is then interpreted depends on the display server and the types of object.

It should also be emphasised that similar object structures might be visualised in very different
ways by the display server, depending on the context, object count etc. After all, the goal of the

3

164

project is to allow the developer to concentrate on structure and let the display server generate a
suitable interface. A very simple example of this would be with selection lists. With a short list of
options a drop down list might suffice, but if this list grows to contain even hundreds of options the
display server should probably group these and generate pages for each group. It is not difficult
to describe more complex cases, which may require quite a lot of work from the display server and
its implementor. The point to remember is to allow the developer to focus on using structures
without thinking of the result and to generate good-looking output whatever the input.

Some examples of object types:

BTN Button. For setting up control points in the interface. With buttons the user can
quickly access important features of the application.

EVNT The super-type for objects detecting events.

GRP Used to group objects together.

TXT Text and editable text areas.

4 The application server

Application Display Serverconnect Display

Figure 1: Normal application architecture.

In some situations the display server itself may want to start applications. This can be useful
in desktop systems where double clicking on an icon results in communication with a display server,
which then starts the appropriate application. This application will often then connect back to
the display server to build the user interface. Another similar situation occurs with HTTP -based
display servers where a listening display server translates certain URLs into requests to start up
applications. The ENIÄK application server allow these scenarios.

In the simple client-server model, an application is started (f.ex. from a command shell) and
is told to communicate with a specified display server. The application connects to this display
server and describes the interface structure. This is then translated into visual form for the user.
This is shown in figure 1.

Application Display Server

exec

Display

connect

connect

II
III

Application Server I

Figure 2: Tying an application server into an ENIÄK system.

Alternatively the display server can connect to an application server, if one is running, and
instruct it to start an application. The application server can either start the application itself or
redirect the request to another application server. When starting an application, the application
server can then inform the application of the whereabouts of the display server and any other
necessary information. After that, the application can connect to the display server just as with
the simple model. This process is shown in figure 2.

4

165

5 A Tcl/XOTcl client library

The ENIÄK system itself does not specify anything about what client libraries should look like
and how they should be implemented. However, it is impossible to imagine the system being in
use without them. Developers would probably not be particularly charmed by the idea that they
would have to read and write from sockets themselves!

As mentioned previously, work is commencing on a library based on Tcl and to be used with
Tcl. It uses the extension XOTcl, which provides a clean, read/write introspective object oriented
system. Many of the object types and features have been fairly directly mapped to equivalent
XOTcl classes and methods allowing for a clean and straightforward way of creating ENIÄK
applications from Tcl.

Here is a short (but complete) example of what code using the library might look like:

package require fishpool.eniak

namespace import eniak:*

proc changeText {btnOn evntOb} {
global txt i root

Increase the counter and change the text in the text

object.

incr i

$txt text ‘‘Count: $i’’

$root refresh

}
set i 0

Setup connection with display server on localhost at

port 24242. Call the application ‘‘Example’’.

set ds [EniakServer new localhost 24242 ‘‘Example’’]

Get the automatically created root object.

set root [$ds getRoot]

Create a text object as a child of the root object.

set txt [Text new $root]

Set initial text.

$txt text ‘‘Count: 0’’

Create a button (and activation event object, which the

library creates automatically) that calls the changeText

procedure when activated. It is a child of the text

object.

set btn [Button new $txt ‘‘Count’’ changeText]

Changes are only guaranteed to happen after refresh is

called on the parent.

$root refresh

vwait forever

So in 16 lines of actual code we can create a complete application that will run equally well in X as
on the web (if the necessary display servers are available). It is not a terribly useful one, but even if
we only had a web display server available, we can already see that this way is preferable to dealing
directly with HTML and handling forms. The display server will do all of that automatically —
and we can later run it as an X application!

6 A HTTP display server

The HTTP display server was created primarily because of actual need for such a product. Its
implementation was bound to be less straight-forward than a Tk display server, for example,

5

166

because there would not be a persistent connection between the user and the display server. The
ENIÄK clients (the applications) would connect to the display server and communicate using the
ENIÄK protocol, and the users would have access to the applications using a web browser.

The obvious starting point for the HTTP display server was the TclHttpd web server, the
functionality of which can be elegantly extended for tasks such as this, with just Tcl. The display
server configuration includes the location of an application server and a list of applications that
can be started. Individual URLs are assigned for starting each application. When the user visits
an URL assigned for starting an application, this is what happens in more detail:

1. When the display server receives a HTTP request for the URL assigned for starting the
application, it asks the application server to start an instance of the application.

2. The application connects to the display server.

3. The display server redirects the user’s waiting web browser to an URL assigned for this
particular instance of the application.

4. The display server receives the second HTTP request and returns the web client an HTML
page representing the current state of the application.

The HTTP display server uses the Tcl event loop mechanism to handle data from the application
server, the ENIÄK clients and the web clients asynchronously. For example between the possibly
considerable delay between steps 1. and 2. in the example, data from other ENIÄK clients
or requests from other web clients can be processed. Widgets such as buttons and text fields
are represented by their HTML equivalents, and further interaction between the user and the
application is done by handling the HTTP requests when the user submits the form — which often
may only contain buttons and no actual input fields.

The display server code is a set of XOTcl classes. Some of the classes, like the base implemen-
tations of different types of ENIÄK objects, are common to all display server implementations,
and provide a common framework with which it is easier to implement display servers for other
environments.

The HTTP display server is still very much under construction, but it is already perfectly
functional. The problems encountered so far are mostly related to the nature of the environment:
the limitations of HTML and the lack of persistent connection to the user. The user can cancel
the HTTP requests suddenly, for example, and making sure that the user is looking at what the
application developer would want him to be looking at can be tricky.

7 Related work

Berlin is a project with many similar ideas as ENIÄK. It strives to provide a structured way to
build user interfaces. It supports network transparency via the use of CORBA. In the future there
are also plans to use different display servers for various platforms.

However, the focus is somewhat different. While the goal of ENIÄK is to integrate with existing
environments (like the different available toolkits), the Berlin project is focused on implementing a
new windowing system and a graphical display server. The ability to work with other environments
in the future is more of a footnote than something that is core to Berlin. In comparison ENIÄK is
only really a protocol and object specification and it is of high priority to work on a wide range of
display servers and clients, as early on as possible. Berlin talks of structured graphics, while the
term structured interface description is preferred in ENIÄK.

In addition, it is very easy to quickly understand the basics of ENIÄK and get a simple
application running. In this way one is reminded of the simple efficiency that Tk programmers
have grown used to.

However, despite the differences in focus, there may be areas where some collaboration can
be done and so this should be looked at more carefully.

6

167

8 Conclusions

The HTTP display server, the XOTcl library and an application server are evolving continuously
and have been used quite extensively for developing a couple of applications. A lot of effort has
gone into making all the components work together — especially the display server and all the
hidden logic involved. While this has taken time, developing the actual applications has been
much quicker than what it would otherwise have been, plus there is the added bonus that they will
integrate nicely with future display servers for other environments like X and Windows. This will
become even simpler when the library is able to handle ENIÄK resource files. The work reflects
the philosophy of any lazy programmer: do a bit more work in the beginning and much less in the
future.

There is still a lot to be done. The system is already in use, but lags behind the specification
and cannot neatly handle all object type combinations. In addition to that on-going effort, more
display servers and client libraries for other languages and environments would result in a huge
leap in the relevance of system for everyday life. Any community effort is extremely welcome.
Please contact the author if you are willing to contribute in any small way.

References

[1] John Ousterhout: An X11 Toolkit Based on the Tcl Language, 1991.

[2] John Ousterhout: Tcl: An embeddable Command Language, 1990.

[3] Kristoffer Lawson: ENIÄK v1.0, http://dev.fishpool.fi/oss/eniak/doc/eniak.ps.

[4] ENIÄK homepage, http://dev.fishpool.fi/oss/eniak/

[5] Brent Welch, The TclHttpd Web Server.

[6] The GIMP Toolkit, http://www.gtk.org/.

[7] Qt GUI Framework, http://www.trolltech.com/products/qt/.

[8] LATEX, A Document Preparation System, Leslie Lamport, 1994.

[9] Extensible Markup Language (XML), http://www.w3.org/XML/.

[10] G. Neumann, U. Zdun: XOTcl, an Object-Oriented Scripting Language. Proceedings of Tcl2k:
The 7th USENIX Tcl/Tk Conference, Austin, Texas, USA, February, 2000.

[11] XOTcl webpage, http://www.xotcl.org/.

[12] Stefan Seefeld, Graydon Hoare: Berlin: A Structured User Interface.

7

168

13mod dtcl web scripting with Tcl

David N. Welton (mailto:davidw@apache.org)

mailto: davidw@apache.org

mod dtcl
web scripting with Tcl

David N. Welton 〈davidw@apache.org〉

May 21, 2001

What is it?

mod dtcl integrates the Tcl scripting language with the Apache web

server, so that it is possible to use Tcl for server-side web scripting.

It is similar to PHP, in functionality.

1

170

Hello world

<h1>Some HTML</h1>

<?

hputs ‘‘hello world’’

?>

<? if { $foo == 1 } { ?>

More Html

...

<? } ?>

...

2

Advantages

• Avoid reinventing the wheel!

• Lots of existing Tcl code.

• Use code both for web projects and elsewhere.

• Lightweight.

• Easy to use.

• Fast!

3

171

One Language

With Tcl, you can take advantage of the existing mass of source code

already available, and what’s more, reuse the same code throughout

your projects, involving the web or not.

4

Small and light

• ls -l mod dtcl.so is about 45K on a Linux PPC system.

• wc -l *.[ch] is 3010 lines.

• Runtime Apache processes grow by about a meg with mod dtcl ,

on a PPC Linux system.

5

172

Comparisons with other languages/systems

• CGI

• PHP

• mod perl

• Zope

• Java

• Other Tcl solutions

6

CGI

CGI is a bit dated, and is inefficient, unless the process run is so heavy

as to make the overhead of running it seem insignificant.

7

173

PHP

PHP is the example that mod dtcl follows, but has a big limitation:

it only runs on the web! It has a number of good features - it is

small, light, reasonably fast, and is easy for non programmers to use.

However, it has the disadvantage of being created for one and only

one use, making it impossible or difficult to use elsewhere.

8

mod perl

mod perl takes a different approach - it lets you access the function-

ality of Apache with Perl. This makes it rather large, and at times

difficult to install and use for simple things. In any case, we have

mod tcl (more on that later).

9

174

Zope

Zope is another very large and somewhat complex system. It may

work well for larger sites that need some of the order and structure

it imposes, but it is difficult to compare to mod dtcl, which is aimed

at a different target. It must be said, though, that Python is a nice

language.

10

Server-side Java

Buzzwords galore!

Java isn’t a higher level language. Strings are what “goes into” and

“comes out of” web pages, so why not use a language adept at

dealing with them? Java is harder to use, set up, and you may have

licensing issues.

11

175

Other Tcl/Web platforms

AOLserver is a very nice package which demonstrates the power

of Tcl. It is impressive to think that it (along with the proprietary

StoryServer) were created in 1995, when most people were using Perl

CGI’s. It is a complete server from the ground up, and so doesn’t

ride on Apache. NeoWebScript, by Karl Lehenbauer, is similar to

mod dtcl, but does a few things differently. mod dtcl was however,

the *first* Free Software Tcl/Web system.

12

How does it work?

• Embedded Tcl interpreter.

• Pages run in separate namespaces.

• Cached bytecompiled scripts.

• Memory IO channel / cached output.

• HTML/Tcl integration.

13

176

Interpreter

One Tcl interpreter runs in each Apache process, and eache .ttml file

is run within a seperate Tcl namespace. This lets .ttml files share

variables, if necessary, but makes it difficult for pages to interfere with

one another.

14

Cacheing

When a .ttml page is first loaded, the bytecompiled Tcl code is in-

serted into a cache, so that the next time the page is hit, it is not

necessary to recompile the code, or even open the file again.

15

177

Memory IO Channel

When creating mod dtcl, it was considered desireable to be able to

run normal Tcl scripts with as little modifications as possible. In order

to deal with standard output, mod dtcl uses an in-memory file channel

that then uses Apache’s output functions. So puts ‘‘foobar’’ works

in mod dtcl.

16

Mixing HTML and Tcl

Tcl and HTML can be mixed as much as is necessary. The mod dtcl

parser replaces sections of HTML as “hputs” statements. This lets

you put bits of HTML in the middle of loops, in conditional state-

ments, and so on.

17

178

Another Example
<?
set i 1
hputs "<table>"

while { $i <= 8 } {
hputs "<tr>"
for {set j 1} {$j <= 8} {incr j} {

set num [expr {$i * $j * 4 - 1}]
hputs [format "<td bgcolor=%2x%2x%2x > $num $num $num </td>" \

$num $num $num]
}
incr i
hputs "</tr>"

}

hputs "</table>"
?>

18

Produces...

3 3 3 7 7 7 11 11 11 15 15 15 19 19 19 23 23 23 27 27 27 31 31 31

7 7 7 15 15 15 23 23 23 31 31 31 39 39 39 47 47 47 55 55 55 63 63 63

11 11 11 23 23 23 35 35 35 47 47 47 59 59 59 71 71 71 83 83 83 95 95 95

15 15 15 31 31 31 47 47 47 63 63 63 79 79 79 95 95 95 111 111 111 127 127 127

19 19 19 39 39 39 59 59 59 79 79 79 99 99 99 119 119 119 139 139 139 159 159 159

23 23 23 47 47 47 71 71 71 95 95 95 119 119 119 143 143 143 167 167 167 191 191 191

27 27 27 55 55 55 83 83 83 111 111 111 139 139 139 167 167 167 195 195 195 223 223 223

31 31 31 63 63 63 95 95 95 127 127 127 159 159 159 191 191 191 223 223 223 255 255 255

19

179

The Future

• mod tcl.

• Useful functions (library).

• Safe mode.

• Nice logo!

20

mod tcl

mod tcl is the Tcl equivalent of mod perl - it gives us access to the

Apache API through Tcl. It is currently available for Apache 2.0.

21

180

Library functions

Currently a problem with Tcl in general - lots of code out there, but

it’s poorly organized and there is no quality control.

22

Safe mode

It hasn’t been requested much, but it would be interesting to take

advantage of Tcl’s safe interpreters to make ’safe’ pages of some

kind.

23

181

Looking for a Logo

If anyone with an artistic bent has some ideas, they are more than

welcome:-)

24

Conclusion

Tcl is an excellent language for the web. As a generalized, embed-

dable “command language”, it is a natural for the web, giving the

user a powerful language with years of history and many capabilities,

in an environment tuned for use with the web.

25

182

Contact Information

Web site: http://tcl.apache.org/

Email: davidw@apache.org

26

183

	Contents
	The (Active) State of Tcl
	Why we use Tcl as strategic development platform.
	LegacyTcl
	XOTcl @ Work
	Tcl for dynamic Web applications
	tDOM
	Game Scripting with Tcl
	Generating test programs with TestMake
	Creating generalised Tools for Database Access using Tcl/Tk
	Using TCL as Middleware for Parallelizing Environment Development
	Tcl on the iPaq
	ENIÄK -- High-level construction of user interfaces
	mod dtcl web scripting with Tcl

