
A CORBA LanguageMappingfor Tcl

FrankPilhofer
�

June15,2000

Abstract

Tcl is designedto be a powerful general-purpose
scriptinglanguageandis oftenreferredto asa glue
language,to gluetogethervariouspartsof anappli-
cation.Often,these“variousparts,” or components,
arerealizedasC codethat is registeredwith the in-
terpreterasacustomcommand.

It is easyto imaginethesecomponentsasbeing
distributed– a customcommandcouldcausesome
sortof requestto besentoverthenetwork, returning
thereply backto thescript.

CORBA is a hardware and vendor-independent
de-facto standardfor distributed computing. By
specifyingaCORBA languagemappingfor Tcl and
providing accessto an ObjectRequestBroker, Tcl
scripts can fully interoperatewith other CORBA
clientsandservers.

With the rapid applicationdevelopmentfeatures
of Tcl andtheconnectivity of CORBA, thepossibil-
ities rangefrom testingof existingCORBA services
to graphicaluser interfaceswith the aid of Tk, or
evento script-basedCORBA servers.

This paperpresentsthe CORBA languagemap-
ping for Tcl usedin the Combatproject,discusses
its featuresandpossibleimprovements,andmakes
comparisonswith similarprojects.

1 CORBA

Distributed systemshave a numberof advantages
over centralizedprocessingthat are attractive for
an equally wide rangeof applications. However,
building distributedsystemsthat requirecommuni-
cation acrossprocessor host boundariesis inher-
ently complicated,with communicationoverhead,
multiplepointsof failure,securityconcernsandsyn-
chronizationissues. Multiple attemptshave been
madeto providegenericdistributionplatformsto aid
thedevelopmentof a distributedsystemandto hide
thecomplicationsasmuchaspossible,but few have

�

SendEmail to fp@fpx.de

interface Calculator {
double calculate (in string expr);

};

Figure1: ExampleIDL file

stoodthe test of time. Middleware implementsa
“middle layer,” abstractingthelowernetwork layers
andpresentingauniforminterfaceto theapplication
layeraccordingto OSI terminology.

The CommonObject RequestBroker Architec-
ture (CORBA) [4] is a particularly successfulex-
ampleof a middleware. Publishedby the Object
ManagementGroup(OMG), a consortiumof more
than700 companies,it is an openandfreely avail-
ablespecificationof aninfrastructurefor distributed
objects.

The key componentof the Object Management
Architectureis the Object RequestBroker (ORB),
often called “object bus,” which allows commu-
nication amongtheseobjectsby directing remote
methodinvocationsfrom client to server.

Part of CORBA’s successis its viability in het-
erogeneousenvironments. Objectsare addressed
by opaqueInteroperableObject References(IOR)
thatencapsulateaddressinginformationfor various
typesof networks, of which a client canselectthe
mostoptimal. The abstractGIOP communications
protocol(GeneralInter-ORBProtocol)isnotlimited
to TCP/IPnetworks,evenif theInternetInter-ORB
Protocol(IIOP) is, at themoment,its only specified
implementation.

A remotemethodinvocation is initiated by the
client sendinga GIOP requestover the network.
This requestincludesinformation aboutthe target
object,the methodnameandthe parametervalues,
but no type information. For this to work, informa-
tion aboutavailablemethodsandits parametertypes
mustbepublishedin anabstractInterfaceDefinition
Language (IDL), which is similar to a C++ header
file (figure1).

Clients and servers can employ the type infor-

1

Client-Side ORB

(Generated Code)

User Code

Stub

Server-Side ORB

(Generated Code)
Skeleton

User Code

GIOP

Client Server

Figure2: Performinga CORBA invocation

mationcontainedin the “human-readable”IDL de-
scription either by running an IDL “compiler” to
createstaticclient-sidestubsandserver-sideskele-
tons, or they can load the file into an Interface
Repository(IFR), where type information can be
readfrom at runtime. (The IFR itself is described
in IDL, soclientscanusetheIFR’s generatedstubs
to accessit.)

The appearanceof stubsand skeletons,and the
representationof basic and composedIDL types,
differsbetweenprogramminglanguages,andis de-
fined by a “languagemapping”. Official language
mappings [3] currently exist for C, C++, Java,
Smalltalk,Ada,COBOL,PythonandIDLscript (the
latter two not yet finalized). Unofficial language
mappingshavebeenproposedfor languagessuchas
Eiffel, VisualBasicandPerl,to namea few.

Theavailability of awiderangeof languagemap-
pingsunderlinesthe attractivenessof CORBA and
its language-independentapproach. Unlike with
othermiddleware,thedeveloperis not tied to a spe-
cific environmentbut canstick to her favorite lan-
guage,aslong asa languagemappingexists,either
anofficial or a self-definedone.

As alreadyhintedat, thelanguagemappingitself
is not enoughto participatein CORBA communi-
cation. The other part is the Object RequestBro-
ker, whichprovidessomebasicinterfacesof its own
andthenecessaryinfrastructurefor stubsandskele-
tons,i.e.objectreferencehandling,connectionman-
agement,themarshalingof parametersinto andthe
retrieval of returnvaluesfrom GIOPmessages(see
figure2).

2 Scripting Languages

Scripting languageshave proven themselves to be
at leastassuitablefor complex applicationdevelop-
mentastraditionalcompiledlanguages[6]. Particu-
larly attractiveis theshortturnaroundtimedueto the
missingcompilationstep,andtheresultingpossibil-

ities for rapidapplicationdevelopmentandone-shot
bug fixing. Justasinterestingareinteractive capa-
bilities of loading a set of codeinto a running in-
terpreterandtestingits subcomponents“li ve” at the
consoleor with test scripts. Another contributing
factoris the usuallyvery lax typesystemof script-
ing languages,letting the developerconcentrateon
thework aheadinsteadof ontypesignatures– ama-
jor time saver in areaswherestrict typeaherenceis
not required.

Last but not least, scripts run unchangedon
all platformssupportedby the interpreter, whereas
compiled languages,which are in closer contact
with theoperatingsystem,oftenneedmodifications
whenportedto adifferentsystem.

One popularrepresentative of the scripting lan-
guagekind is Tcl, theTool CommandLanguage[9].
Apart from thereasonsmentionedabove,Tcl is also
known for integratingTk, asetof easy-to-usegraph-
ical widgets,whichallow thedevelopmentof attrac-
tive user interfaceswith a minimal amountof Tcl
code.

Tcl hasbeendesignedas a glue language;it is
easilyextensiblein bothC andin Tcl itself. C code
canthenitself beusedasagluefor third-partypack-
ages.Overtheyears,animpressivesetof extensions
hasappeared,suchasTk, Expect,dataencryption,
cgi scriptingordatabaseaccess.Thefascinatingpart
is that all suchextensionscan be usedin parallel,
resultingin synergeticeffects,suchasdatabasecgi
scriptsbeingwritten in a few linesof Tcl.

A CORBA extensionmakes anotherinteresting
addition to the mosaic,with possibilitieslike test-
scripting existing CORBA servers, graphicaluser
interfacesaccessingCORBA servicesor the rapid
developmentof servicesthemselves,maybeby ex-
ploiting existing extensions.

As mentioned,bringing CORBA to Tcl requires
bothanORBanda languagemapping.

3 Language Mapping

A CORBA languagemapping requires basically
threeparts:

� RepresentingIDL datatypes

� Representingclient-sidestubs

� Representingserver-sideskeletons

For the mappingto be useful, it should integrate
seamlesslyinto thelanguage,sothatusingstubsand
skeletonsappearsasnaturalaspossible.In C++, for

2

IDL Type Tcl Type

short,long,unsignedshort int
unsignedlong,(unsigned)long long string

float,double,longdouble double
char, wchar, string,wstring,octet string

boolean boolean
enum string
fixed string

Table1: Mappingof simpleIDL typesto Tcl

example,stubsarenormalC++ objectsthatexpose
the methodsdefinedin the IDL description,which
then transparentlymarshaltheir parametersinto a
GIOP request,perform necessaryupcalls into the
ORB, extract thereply andreturntheserver’s reply
to the caller – in C++, a remoteinvocation“feels”
likea localone.

For aTcl languagemapping,thepeculiaritiesand
limitationsof Tcl mustbekept in mind,suchasthe
lack of a true typesystemandthe lack of anobject
system.

There is yet no official Tcl languagemapping,
and an effort initiated by Sun Microsystemsand
IONA Technologies[5] as a responseto the ill-
fated,components-centricCORBA Scripting Lan-
guageRFPhassincebeenabandoned.

Thefollowing sectionsdescribetheTcl language
mappingimplementedin theCombatproject[7]. Its
strengthsandweaknessesareexplored,so that fu-
ture discussioncan renderit suitablefor standard-
ization.

3.1 Mapping IDL Types

Earlier versionsof Tcl did not provide a type sys-
tem at all, all datawas representedas stringsand
interpretedaccordingto context. Tcl 8.0 addeda
backwards-compatibletypesystemby keepingboth
an “internal” and a “stringified” representationof
values.New typescanbeaddedby providing two-
way conversionfunctions. Whenever a valueis re-
questedto have a certaintype (i.e. an integer),first
theold type is requestedto updatethestring repre-
sentation,andthenthe integertypeis askedto scan
the string – therefore,stringsremainthe common
denominatorfor datarepresentation.Tcl provides
the “built-in” types integer, double, boolean,list,
string,andbytearray.

CORBA, in contrast,is built upon a strict type
system– arequirementof theGIOPprotocol,which
doesnot includetypeinformation,sosenderandre-
cipient mustboth know how to interpretincoming

IDL Type List Members

sequence {value0 ����� valuen}
array {value0 ����� valuen}
struct {name0 value0 ����� namen valuen}
union {discriminatorvalue}

TypeCode {TCKind . . . }
any {typecodevalue}

exception {repository-id{struct members}}

Table2: Mappingof complex IDL typesto Tcl

binarydata.
Table 1 shows how Combatmapssimple IDL

typesto Tcl types.This mappingis straightforward
for sometypes,but not for others. Somenumeric
typescannotberepresentedin Tcl, which only pro-
videsasignedinteger(usually31bitsplus1signbit)
type, so the 32-bit IDL type unsigned long could
exceedits range. It is thereforerenderedasa Tcl
string,anderrorsmightresultif arithmeticcomputa-
tionsareattemptedat theTcl level. Thesameholds
for the infrequently-usedfixed IDL type,which is
representedby astringcontainingthevaluein expo-
nential representation:it canbe usedasa numeric
value,but mayexceedTcl’snumericrange.

Precision may be lost by mapping the
long double IDL type (112 bits of mantissa)
to Tcl’s floating point type, which, dependingon
the machine’s own floating-pointformat, might be
lessprecise.

Tcl’sonly complex datatypeis thelist – its string-
indexedassociative arrayscanhardlybecountedas
such.Arraysdo not exist asa separatedatatypebut
areonly hacked into the normal type system:they
cannotbecopied,cannotbenested,andthey do not
haveastringrepresentation.

Therefore,theCombatmappingdoesnot useTcl
arraysfor complex IDL types,but lists only. Ta-
ble 2 shows the compositionof Tcl lists for con-
structedIDL types.As anexample,IDL sequences
andarraysareintuitively mappedto aTcl list where
eachlist elementcontainsonesequenceor arrayel-
ement. For the struct type, a list alternatingbe-
tweenfield namesandvaluesis used,for easyac-
cesswith Tcl’s array get or array set commands.
SinceIDL typescanbenested,socantheTcl types,
andeachsequenceor structelementcanitself beof
a complex IDL type. As an exception,sequences
and arrays of char and octet are mappedto Tcl
stringsand byte arrays,so that the “opaque” type
sequence<octet> canbehandledefficiently.

Not shown is the mappingof the TypeCode type,
whosecontentscompletelydescribean IDL type.

3

The representationdiffers for eachTypeCodekind
andis modeledsimilar to theirGIOPencoding.

ThismappingtranslatesIDL typesto Tcl typesin
avery intuitivemanner, andvaluescanbeexamined
with standardTcl commands(suchas lindex and
array). However, the necessaryconversionstake
time, andcanbe consideredtoo slow. A different
solution(asproposedin [5]) would beto mapcom-
plex IDL typesin anopaquemannerandto provide
accessorfunctionsfor their contents.This would be
faster, but addsa numberof new functionsfor con-
structingandaccessingeachIDL type.

As an optimization,Combattakes advantageof
Tcl’s type systemandregistersits own CORBA::Any

type. This native representationis unrolledaccord-
ing to the above mappingonly upon request,if a
scriptactuallyaccessesits members.However, type
conversionrequiresfull unrolling of thetype into a
string,soaccessingonelist memberrequiresupdat-
ing thestringrepresentationfirst andthenscanning
of thatstringby the list conversionfunction. Com-
bat tries to compensateby replacingthis list con-
versionfunction by one that knows aboutthe new
type,but unfortunately, Tcl’s implementationof the
list functionsbypassTcl’s typesystemanddirectly
call their “known” conversionfunction,1 reducing
theeffect.

3.2 Mapping Stubs

Stubs are client-side proceduresthat representa
CORBA object. A stubhasa type thatcorresponds
to anIDL-declaredinterface,exportsthatinterface’s
operations,and incorporatesan object reference.
Wheninvoked,a stubmustmarshaltheoperation’s
parametersinto a GIOPmessageandcall the ORB
to transportthe requestto the target addresscon-
tainedin theobjectreference.

CombatusesTcl proceduresto representstubs.
For each object reference that a script ac-
quires, either from ORB procedures such as
string_to_object or asreturnvaluefrom a method
invocation, Combatcreatesa new Tcl procedure,
handle in Combat terminology, that encapsulates
type information and the object reference. The
procedureinterpretsits first argumentasoperation
nameand the remainingargumentsas the opera-
tion’sparameters.

IDL alsosupportsout parametersthatarepassed
from the server to the client, and inout parameters
that arepassedin both directions. For these,Tcl’s

1lindex et al call SetListFromAny() insteadof Tcl_Convert-
ToType().

Client-Side ORB

Interface Repository

Client

User Code

Generic Stub

To Server

Figure3: Thegenericstubneedsaccessto anInter-
faceRepository.

set calc [corba::string_to_o bje ct \
corbaloc::rose:123 4/C alc ula tor]

set res [$calc calculate 1+2*3+4]
puts "$res"

Figure4: Exampleof usingastub

usualcall-by-namehandlingis used,i.e. the script
passesa variablenamethat the stub accessesvia
upvar .

An obviousproblemis thattheprocedurereceives
weaklytypedargumentsfromtheTcl scriptbut must
generatea stronglytypedGIOPrequest,sothehan-
dle requirestype informationandmustverify each
argument’svalueagainsttheexpectedtype. In C++,
this problemis solved by usingtype-specificstatic
stubsfor eachinterface,which have the necessary
informationhardcodedby theIDL compiler.

This approachwasdeemedunsuitablefor theTcl
mapping,which shouldbe dynamicratherthanre-
quiring compile-timeinformation– elseonemajor
scriptinglanguageadvantagewould belost.

Combatthereforeusesa dynamicstubprocedure
that readsan object reference’s type id at runtime
and accessesan Interface Repository, a standard
CORBA servicecontainingtypeinformation,to ver-
ify an operation’s nameandsignature,asshown in
figure3. Figure4 shows theusageof a stub.

Left to the user is the “feeding” of the Inter-
faceRepository, an ORB-dependentprocedurethat
is similar to running the IDL compiler. For ease
of operation,Combatincludesits own “IDL to Tcl
compiler”thatgeneratesstringifiedtypeinformation
from an IDL file, andallows this informationto be
loadedinto a local InterfaceRepository, so that no
externalprocessis needed.

A problemis that thereis no public interfaceto
readthetypeid from anobjectreference.Combat’s
gluecodeknowssomehacksto extractit whenbuilt
upon“known” ORBs,but this fails elsewhere.Fur-

4

thermore,objectreferencesarenot requiredto hold
a valid typeid.

The only CORBA-compliant way to receive an
object’s typeinformationis to sendaGIOPrequest2

asking for interface information, but that requires
setting up an Interface Repositoryat the server’s
end. In a worst-casescenario,where the object
referencedoesnot containuseful information,and
where the server is not connectedto an Interface
Repository, the client is out of luck and must use
aCombat-specifichackto assigntypeinformation.3

On the Tcl end, the handle’s implementationis
facedwith problems,too. On onehand,a handleis
aprocedure,but ontheotherhand,it is data,sinceit
encapsulatesanobjectreference,andthereforeblurs
the distinctionTcl’s type systemhasbetweendata
andprocedures.

In particular, Tcl garbage-collectsdatathatis not
referencedby any variable,sowhena local variable
goesout of scopebecausetheprocedureis left, the
datais automaticallyreleased.Sucha mechanism
doesnot exist for procedures:if a procedureis not
referencedanywhere,is is not cleanedup.

However, garbagecollection is essentialfor ob-
ject references.Becauseobject referencescan be
containedin partsof a complex valuethat the user
is not interestedin (e.g.asby-productof a structure
or any value), they arehard to keeptrack of. Re-
quiring theuserto explicitly freehandleswould be
non-intuitive.

Tcl is not really preparedfor suchcoexistenceof
value and procedure. When a handleis invoked,
Tcl normally tries to compilethe dataandthenre-
placestheoriginal informationwith the“compiled”
one,but in thisreplacement,theassociationbetween
procedureand its datais lost. To prevent this be-
havior, Combatreplaceshandling for Tcl’s inter-
nal cmdName type and addsits own hooks,a tech-
nologypioneeredby TclBlend[10], whichmanages
reference-countedJava codeobjects.

But this relieson internalTcl interfacesthat are
subjectto change,and even as is, the approachis
not perfect. For example,if a complex value that
containsanobjectreferenceis accessedasa list, the
resulting list conversionupdatesthe value’s string
representationandfreesCombat’s handlerepresen-
tation, so a workaroundwas addedto completely
unwind any type that containsan object reference
ratherthan using the CORBA::Any type. Over the
lifetime of Combat,severalhacksandworkarounds

2Using the _interface pseudooperation,which returnsa
pointerinto anInterfaceRepository.

3If an _is_a pseudooperationsucceeds,Combatusesthat
knowledgeto updateits typeinformationfor theobject.

haveaccumulatedin thecode.
Therefore, Combat is desperatefor a solution

such as Feather’s commandobjects, which are a
framework for reference-countedprocedures.But
as describedin [1], Feathercurrently usessimilar
hooksto thosedescribedhereanddoesnotoffer any
improvementin behavior.

3.3 Mapping Skeletons

Ontheserverside,skeletonsexist to receive incom-
ing requestsfromtheORB,to unmarshalparameters
andto performthe upcall into usercode. The user
mustthereforebeableto registercustomcodewith
theskeleton.

A server processcancontainmany instancesof
thesameor of differentskeletons,eachcorrespond-
ing to a CORBA object and called servants. Ser-
vants must be registeredwith an Object Adapter,
which servesasa mediatorbetweenthe ORB and
the implementation,providing an interfacefor con-
trolling the flow of requestsand their direction to
the “right” servant. As part of its registrationwith
an Object Adapter, or activation, a servant is as-
signedits “identity” in the form of an object ref-
erence. Combatfully exposesthe PortableObject
Adapter’s interface[8] at theTcl level.

The requirementsof a skeleton – extensibility
with usercode,identity, andimplementationinher-
itanceto supportIDL’s interfaceinheritance– are
the sameasfor an object. Therefore,skeletonsare
mappedto objects.

Ratherthan re-inventing the wheel, the popular
[INCR TCL] extension[2] is used.In orderto imple-
menta servant, the userwrites an [INCR TCL] class
that inherits the skeletonclassand implementsthe
methodsaccordingto theIDL description.

An [INCR TCL] object, i.e. an instanceof that
class,is a Tcl servantthatcanberegisteredwith an
objectadapter. It is obviousthat theusercaneasily
createmultipleinstancesof aclassandregisterthem
separatelyto createmorethanoneobject.

JustasCombatusesa genericstubon the client
side,it alsousesagenericskeletonfor thePortable-

Server::ServantBase baseclass. As on the client
side, the generic skeleton accessesthe Interface
Repositoryto find thenecessarytypeinformationin
orderto unmarshalrequests.Again, theserver side
doesnotneedstaticbut only run-timetypeinforma-
tion. For this to work, theimplementationmustgive
ahint whichinterfaceaservantimplementsby over-
loadingthespecial_Interface methodto returnthe
interface’s type id. Figure5 shows an exampleof

5

class Calculator {
inherit PortableServer::Se rva nt
public method _Interface {} {

return "IDL:Calculator:1.0"
}
public method calculate {expr} {

return [expr $expr]
}

}

Figure5: Servantimplementationexample

a servantimplementation,but not thenecessaryini-
tializationandregistrationcode.

A differentapproachthat hasbeenproposed[5]
is to implementservantsasTcl namespaces.This
would eliminatethedependency on [INCR TCL], but
then,multiple instancesof the sameservant would
have to cope with identity problemsthemselves,
having to put their individual stateinto anarrayin-
dexedby ato-be-definedidentifierkey. For an [INCR

TCL] object, this is a built-in capability. Also, im-
plementationinheritanceis impossiblewith names-
paces.

On the other side, [INCR TCL] is not perfectfor
two reasons. One, its objects are not garbage-
collected,andtwo, it doesnot yet supportdiamond
inheritance.4 Sinceeachimplementationclassmust
inherit thegenericskeletonasits base,multiple in-
heritanceon theIDL level would resultin diamond
inheritanceat the [INCR TCL] level. Implementing
interfacesthat usemultiple inheritanceis possible
usingdifferentinheritancetechniquesor delegation,
but not with intuitive implementationinheritance.

3.4 ORB Interface

Not really a part of the languagemappingis the
ORB interface.TheORB is basicallya layerabove
the network but below the stubsandskeletonsand
for themostpartinvisible,but it doesprovideacou-
ple of interfaceson its own, suchastheconversion
betweenstringified object referenceshandles,and
methodsto bootstrapinitial objectreferences,such
asa referenceto theNamingServiceor to theRoot
POA.

In contrastto the CORBA specification,Combat
doesnot useORB objects,a designthat would al-
low multiple ORBsto exist in an interpreter, but an
ORBsingletonthatcanbeexplicitly initializedwith

4Thecasewherea baseclassis inheritedmorethanoncevia
differentinheritancepaths.

corba::init or implicitly by usingany otherORB
method.It mightbesensibletochangethisapproach
in thefuture,ashavinganORBobjectis amoreflex-
ible design,asit doesnot requireintroducinga new
Tcl commandfor eachORBmethod.

StandardCORBA services,suchastheNamingor
EventService,arespecifiedin IDL andaretherefore
subjectto themappingsasdescribedabove,sothey
can be usedas long as their interfaceinformation
hasbeenloadedinto anInterfaceRepository.

The Combatmappingalsoincludesconvenience
commandsto deal with exceptions. Basically,
CORBA exceptionsare mappedto Tcl errorsand
can be handledwith the native catch command.
corba::throw is, by name,more descriptive than
error but otherwiseidentical,andcorba::try adds
Java-styleexceptionhandlingbasedon the excep-
tion’s repository id (see also 3.1). It might be
reasonedthat thesecommandsare redundant,yet
they makecode,especiallyfor errorhandling,much
morereadable.

Anotherfeatureallowsfor asynchronousrequests
thatareprocessedfrom within Tcl’s eventloop, us-
ing the -async or -callback flag upon a method
invocation. The script then receivesa handlethat
can be passedto corba::request to check if the
operationhas finished, and to retrieve the result.
Asynchrony is important,for example,to maintain
a GUI’s responsiveness.

4 Discussion

The previoussectionhasoutlinedthe Tcl language
mappingusedin theCombatproject.Severaldesign
choiceshave beenmadethat aresubjectto discus-
sion,asalreadymentionedin thetext above.

1. Mapping of complex IDL types to native
Tcl types(string/list) versusmappingthemto
opaquevalueswith accessorfunctions.

2. Usageof genericstubs/skeletonswith run-time
IFR accessversusstatic stubs/skeletonswith
hardcodedtype information, generatedby an
IDL compiler.

3. Garbage-collectionof handlesversusrequiring
theuserto deletethem.

4. Using[INCR TCL] servantsversusanamespace-
basedsolution.

The first item is a choicebetweenintuitive usabil-
ity andspeed,which oughtto be resolved favoring
theformer. By usinggenericstubs,CORBA scripts

6

Figure 6: InterfaceRepositoryBrowser written in
Tcl usingCombat

remainfully dynamicanddo not requirecompile-
time knowledge.However, ase-maildiscussionhas
shown, otherdevelopersmightsetotherpriorities.

There is an open conflict between the third
and fourth issue,becauseit is inconsequentialto
garbage-collecthandles,but to not garbage-collect
servants,a limitation imposedby [INCR TCL]. The
choiceof [INCR TCL] alsoseemspoorbecauseof its
failureto allow diamondinheritance,which is avail-
ablein IDL. But [INCR TCL] providesexactlywhatis
neededin a servant implementation.Therefore,the
authorhopesthat garbagecollection and diamond
inheritancewill be implementedin future versions
of [INCR TCL]. Until then,they remainanuisance.

A further questionis whetherintrospectionfea-
turesarenecessary, suchasa list of active handles,
their types etc. The only introspectioncurrently
availablein Combatis corba::type to retrieve type
codesfrom the Interface Repositoryand to type-
checkvaluesagainstthem.

One major point in discussinga languagemap-
ping shouldbeits implementability. Combatserves
asproof-of-conceptthatthemappingpresentedhere
in factworks,andthatit workswell. But then,Com-
bat is a gluepackagewritten in C++ andhasaccess
to featuresnot availablein Tcl. A requirementon a
CORBA languagemappingfor Tcl shouldbethatit
canalsobeimplementedin pureTcl.

There is enoughreasonto requesta pure-Tcl
ORB. While it would almost certainly be slower
thana gluepackage,which doesall communication
in a compiledlanguage,it would not dependon a
third partypackage,andit wouldnot requirecompi-
lation asCombatdoes.This is attractivenot only in
heterogeneousenvironments– it hasproven much
harderto compile the C++ codeof the ORB and
Combatthan it is to compileTcl, – but also in re-

strictedenvironmentssuchasa browser’s sandbox,
wherecompiledcodeis not acceptable.

With presentTcl, implementing the presented
languagemappingis only possibleto a limited ex-
tent,becauseof thegarbagecollectionissues– here,
theC++ gluecodeuseshooksnot accessiblein Tcl.

But thisis, in fact,theonly limitation preventinga
pure-TclORB.As anotherproof of concept,theau-
thorhaswrittenanexperimentalORB in Tcl (utiliz-
ing [INCR TCL]). Sofar, only theclientsideis imple-
mentedwith someshortcomingson error handling,
but it is indeedsourcecompatibleto Combatexcept
for thenon-garbagecollectedhandlesandpassesits
client-sidetests.

Thedemandfor apure-TclORBfavorsthechoice
of mapping IDL types to native Tcl types over
opaquevalueswith accessorfunctions,becauseif
theseaccessorfunctionswereto beimplementedin
Tcl themselves,they too wouldneedplainTcl input
datato manipulate.

As asidenote,apure-TclORBneedsfacilitiesfor
staticstubsandskeletonsaswell asfor the default
genericones– else,it wouldbeimpossibleto access
or implementanInterfaceRepository.

5 Conclusion

The CORBA languagemappingpresentedin this
paperis a sensibleextensionto the Tcl language.
In intuitivenessanduseability, it winsoverpastsug-
gestionsasin [5] or over otherimplementationsas
TclDii5, tcliop6 andTorb7. All threeareclient-side
solutionsonly, andusea “dumb” stubthathasnei-
therstaticnor run-timetypeinformation,sothatthe
usermustpasstypeinformationfor eachinvocation.

Before the Combatmappingcanbe acceptedas
standard,the mentionedissuesmust be resolved,
someof whichdependonfuturedevelopmentsin the
Tcl core.If reference-countedprocedures,garbage-
collected [INCR TCL] objectsand diamondinheri-
tanceof [INCR TCL] classesarenot implemented,or
if supportfor the third-partyextension[INCR TCL]
was dropped,the mappingwould needto be ad-
justed;potentialalternativeshavebeenmentioned.

Recentdiscussionsof addingan objectpackage
to theTcl coreandthework on theFeatherpackage
give reasonto believe that theseissueswill bedealt
with in a futureTcl version.

Objects by Value, introducedby CORBA 2.3,
have not beenmentionedby this documentandare

5http://www.cerc.wvu.edu/iss/TclDii.htm
6http://leo.cs.uiuc.edu/˜galmasi/
7http://pythontech.co.uk/torb/

7

yet unhandledin Combat. Their mappingto Tcl
needsfurtherdiscussion.

Another reasonfor concernis compatibility be-
tween different packagesimplementingthe same
mapping,or in other words, the portability of Tcl
CORBA scripts. It is thereforesuggestedto in-
troduceexplicit versioning. Combatprovides the
corba::feature commandto probefor variousfea-
turesof the languagemappingthatmight be unim-
plementedby other packages(e.g. core for basic
methodinvocations,async for the asynchrony fea-
ture, and poa for the POA-basedserver-side map-
ping). By assigningversionnumbersto eachfea-
ture and the usual Tcl policy that minor updates
(e.g. from 1.1 to 1.3) are compatible,scriptswill
beableto checkif their requirementsaresupported.
Commandsthat are specificto a packageor to an
ORB must not be placedin the “shared” standard
corba namespace(e.g.combat::ir , mico::bind).

References

[1] Paul Duffin, Feather: Teaching Tcl objectsto
fly. Proceedingsof the 7th USENIX Tcl/Tk
Conference,February2000.

[2] Michael J. McLennan,Object-OrientedPro-
grammingwith [incr Tcl].
http://www.tcltk.com/itcl/

[3] Object ManagementGroup, CORBA Lan-
guageMappingDocumentationIndex.
http://www.omg.org/library/clangindx.html

[4] ObjectManagementGroup,CORBA/IIOP,
http://www.omg.org/corba/cichpter.html

[5] ObjectManagementGroup,CORBA Compo-
nentScriptingRevisedJoint Submission.
ftp://ftp.omg.org/
pub/docs/orbos/98-07-02.pdf

[6] Lutz Prechelt,AnEmpirical Comparisonof C,
C++, Java, Perl, Python,Rexx and Tcl for a
Search/String-ProcessingProgram.
http://wwwipd.ira.uka.de/
˜prechelt/Biblio/#jccpprtTR

[7] FrankPilhofer, Combat.
http://www.fpx.de/Combat/

[8] FrankPilhofer, DesignandImplementationof
thePortableObjectAdapter. Sulimma,1999.

[9] Scriptics,Tcl DeveloperXchange.
http://dev.scriptics.com/

[10] Scriptics,Tcl JavaIntegration.
http://dev.scriptics.com/software/java/

8

